
NOTES ON ARMA PROCESSES FOR SF2943 TIME SERIES ANALYSIS

FILIP LINDSKOG

Abstract. Here are brief notes that I wrote, by borrowing material from [1], [2], and [3],
to emphasize some theoretical aspects of time series analysis. Most likely, the document
will grow as the course progresses. No serious proof reading has been done so there are
probably a few errors somewhere.

1. Preliminaries on power series

Let C denote the complex numbers and consider functions f : C → C. For such functions
the derivative is define similarly as for real-valued functions defined on the real numbers:

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z

provided that the limit exists. The function f is analytic at z0 if f ′(z) exists at every z in
some neighborhood of z0. Similarly, f is analytic in D ⊂ C if f is analytic at every point in
D. It is shown in Theorem 5 in [3] that sums, differences, and products of functions that are
analytic in D are analytic. Moreover, the quotient of two functions analytic in D is analytic
in D except where the denominator equals zero. The polynomials φ(z) = 1−φ1z−· · ·−φpzp
and θ(z) = 1 + θ1z + · · · + θqz

q are analytic everywhere. The rational function θ(z)/φ(z)
is analytic in a domain D if φ(z) 6= 0 for all z in D.

If f is analytic everywhere inside a circle of radius a > 0 centered at z0, then there exists
a power series which converges to f(z) for each z inside this circle; that is

f(z) =

∞∑
k=0

ck(z − z0)k, |z − z0| < a,

where ck = f (k)(z0)/k!. If z0 = 0, then the series is called a Maclaurin series.

2. Linear processes

We begin with some definitions.
White noise. The process {Zt} is white noise with mean 0 and variance σ2, written

WN(0, σ2), if each term has mean 0 and variance σ2, and the terms are uncorrelated.
Stationarity. The process {Xt} is stationary if E[Xt] does not depend on t and

Cov(Xs, Xt) depends on s and t only through |t− s|.
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Moving average process. The process {Xt} is a moving-average process of order q,
written MA(q), if Xt = Zt + θ1Zt−1 + · · ·+ θqZt−q, where {Zt} is WN(0, σ2) and θq 6= 0.

It is easily verified that moving average processes are stationary. Clearly, E[Xt] = 0.
Moreover, for 0 ≤ h ≤ q and with θ0 = 1,

Cov(Xt+h, Xt) = E
[ q∑
j=0

θjZt+h−j

q∑
k=0

θkZt−k

]

= E
[ q∑
j=h

θjZt+h−j

q∑
k=0

θkZt−k

]
+ E

[ h−1∑
j=0

θjZt+h−j

q∑
k=0

θkZt−k

]
=
{

set i = j − h }

= E
[ q−h∑

i=0

θi+hZt−i

q∑
k=0

θkZt−k

]

= σ2
q−h∑
i=0

θi+hθi

verifying that the MA(q) process is stationary.
Linear process. The process {Xt} is a linear process if Xt =

∑∞
j=−∞ ψjZt−j , where

{Zt} is WN(0, σ2), and
∑∞

j=−∞ |ψj | <∞.
We need to verify that the condition on the coefficients ensures that the sum is con-

vergent, i.e. that |
∑∞

j=−∞ ψjZt−j | < ∞ with probability one. For a nonnegative random
variable A,

E[A] =

∫ ∞
0

bfA(b)db

=

∫ ∞
0

fA(b)
(∫ b

0
da
)
db

=

∫ ∞
0

(∫ ∞
a

fA(b)db
)
da

=

∫ ∞
0

P (A > a)da

(assuming that A has a density fA - which is not really necessary to assume) so E[A] <∞
implies that P (A > a)→ 0 as a→∞ which implies that P (A <∞) = 1.

It remains to verify that E[|
∑∞

j=−∞ ψjZt−j |] <∞. Clearly,

∣∣∣ ∞∑
j=−∞

ψjZt−j

∣∣∣ ≤ ∞∑
j=−∞

|ψj ||Zt−j |.
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Since the terms |ψj ||Zt−j | are nonnegative, by Fubini’s (Tonelli’s) theorem we may inter-
change the order of expectation and summation to get

E
[ ∞∑
j=−∞

|ψj ||Zt−j |
]

=

∞∑
j=−∞

|ψj |E[|Zt−j |].

Finally, E[|Zt−j |2] ≥ E[|Zt−j |]2, so putting the pieces together yields

E
[∣∣∣ ∞∑

j=−∞
ψjZt−j

∣∣∣] ≤ E[ ∞∑
j=−∞

|ψj ||Zt−j |
]
≤ σ

∞∑
j=−∞

|ψj | <∞

which verifies that the random sum defining the linear process converges. Computations
similar to those for the MA(q) process shows that linear processes are stationary.

3. ARMA processes: causality and invertibility

Here we present the ARMA process and some of its basic properties.
Autoregressive process. The process {Xt} is an autoregressive process of order p,

written AR(p), if it is stationary and Xt − φ1Xt−1 − · · · − φpXt−p = Zt, where {Zt} is
WN(0, σ2) and φp 6= 0.

Autoregressive processes are less straightforward than moving average processes. For
instance, the AR(1) process, with |φ1| < 1,

Xt = φ1Xt−1 + Zt = φ1(φ1Xt−2 + Zt−1) + Zt = · · · =
∞∑
k=0

φk1Zt−k

can be expressed as linear process (a moving average process of infinite order). On the
other hand, with |φ1| > 1,

Xt = φ−1
1 Xt+1 − φ−1

1 Zt+1 = φ−1
1 (φ−1

1 Xt+2 − φ−1
1 Zt+2)− φ−1

1 Zt+1 = · · · = −
∞∑
k=1

φ−k1 Zt+k

which is also a linear process, but with the unpleasant property that the output of the
system (Xt) depends on future input to the system (Zs for s > t).

We now introduce the autoregressive moving average, ARMA, process and investigate
under what conditions on its parameters it can be represented as a linear process that only
depends on past and current input noise to the system, a property called causality.

ARMA(p, q). The process {Xt} is an ARMA(p, q) process if it is stationary and if for
every t,

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q,(1)

where {Zt} is WN(0, σ2) and the polynomials φ(z) = 1 − φ1z − · · · − φpz
p and θ(z) =

1 + θ1z + · · ·+ θqz
q have no common factors.
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Now we turn to the question whether, and under what conditions, (1) has a solution of
the form

Xt =

∞∑
k=0

ψkZt−k, where

∞∑
k=0

|ψk| <∞.(2)

In that case the ARMA(p, q) process {Xt} is causal, or more precisely, {Xt} is obtained as
the output of a causal linear filter with {Zt} as the input.

We will show that if the autoregressive polynomial φ has no roots in the unit disc, then
the ARMA process is causal.

Proposition 1. If φ(z) 6= 0 for |z| ≤ 1, then the ARMA process has the causal represen-
tation (2).

Proof. (Theorem 3.1.1 in [1].) Let B be the backward shift operator: BjXt = Xt−j and
BjZt = Zt−j . We may rewrite (1) more concisely as

φ(B)Xt = θ(B)Zt.(3)

Formal manipulation gives Xt = φ(B)−1θ(B)Zt. If the polynomial φ satisfies φ(z) 6= 0 for
|z| ≤ 1, then there is some δ > 0 such that φ(z) 6= 0 for |z| < 1 + δ, which ensures that
ψ(z) = φ(z)−1θ(z) is analytic everywhere inside a circle of radius 1 + δ centered at 0. In
particular, for |z| < 1 + δ, ψ(z) can be represented as convergent the power series

ψ(z) =
∞∑
k=0

ψkz
k.

Hence, ψk(1 + δ/2)k → 0 as k → ∞, which implies that |ψk| < K(1 + δ/2)−k for some
K > 0 and every nonnegative integer k. It follows that

∑∞
k=0 |ψk| <∞. Hence,

Xt = φ(B)−1θ(B)Zt =
∞∑
k=0

ψkZt−k, where
∞∑
k=0

|ψk| <∞.

We know that the condition
∑∞

k=0 |ψk| < ∞ ensures that the series representation of
Xt converges absolutely with probability one. Moreover, the condition on the absolute
summability of the coefficients also implies that the linear process is stationary. �

Causality implies stationarity: for a processes {Xt} satisfying (2) and it holds that
E[Xt] = 0 and

Cov(Xt+h, Xt) = E[Xt+hXt] = E
[ ∞∑
j,k=0

ψjψkZt+h−jZt−k

]
= σ2

∞∑
k=0

ψkψk+h.

Since ∣∣∣ ∞∑
k=0

ψkψk+h

∣∣∣ ≤ ∞∑
k=0

|ψk||ψk+h| ≤
∞∑
j=0

|ψj |
∞∑
k=0

|ψk| <∞

E[Xt+hXt] exists finitely.
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Invertibility means that the system input noise variable Zt can be expressed as a linear
function of past system output values Xs for s ≤ t. From the ARMA representation
φ(B)Xt = θ(B)Zt and the study of causality above, it is clear (or at least very plausible)
that the ARMA process is invertible if θ(z) 6= 0 for |z| ≤ 1.

4. Yule-Walker estimation

If {Xt} is stationary, then Cov(Xt+h, Xt) does not depend on t and we define the autoco-
variance function (ACVF) of {Xt} at lag h as γ(h) = Cov(Xt+h, Xt). Similarly, we define
the autocorrelation function (ACF) of {Xt} at lag h as γ(h) = Cor(Xt+h, Xt) = γ(h)/γ(0).

Consider a causal AR(p) process

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt, {Zt} ∼WN(0, σ2).

Multiplying each side of the above expression by Xt−k and taking expectations yield

γ(k) = Cov(Xt, Xt−k)

= φ1Cov(Xt−1, Xt−k) + · · ·+ φpCov(Xt−p, Xt−k) + Cov(Zt, Xt−k)

= φ1γ(k − 1) + · · ·+ φpγ(k − p).
Here causality is used to ensure that Cov(Zt, Xt−k) = 0. For k = 1, . . . , p this operation
results in the matrix equation

Γpφ = γp, where Γp = [γ(i− j)]pi,j=1, φ = (φ1, . . . , φp)
′, γp = (γ(1), . . . , γ(p))′.

Similarly, multiplying each side of the expression

Zt = Xt − φ1Xt−1 − · · · − φpXt−p

by Xt and taking expectations yield σ2 = γ(0)−φ′γp. The covariance matrix Γp is invertible
for any sensible choice of AR(p) process (see Prop. 5.1.1 in [1] for details), which yields

φ = Γ−1
p γp and σ2 = γ(0)− γpΓ−1

p γp.(4)

Notice that (4) can be expressed in terms of autocorrelations instead of autocovariances as

φ = R−1
p ρp and σ2 = γ(0)(1− ρpR−1

p ρp),(5)

where ρp = γ(0)−1γp and Rp = γ(0)−1Γp. The usefulness of expressing the coefficient
of the AR(p) process in terms of autocovariances (or autocorrelations) as in (4) (or (5))
comes from the fact that the autocovariances (and autocorrelations) can be approximated
by their sample analogs

γ̂(h) =
1

n

n−|h|∑
t=0

(Xt+|h| −Xn)(Xt −Xn) and ρ̂(h) =
γ̂(h)

γ̂(0)
(6)

which results in the Yule-Walker estimates. It is shown in Section 2.4.2 in [2] that the

sample autocovariance and autocorrelation matrices Γ̂p and R̂p are in fact invertible if
γ̂(0) > 0. Yule-Walker estimation of the parameters of a AR(p) process is relatively
straightforward if we know the number p. In practice, we do not. However, there are
solutions to this problem.
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5. Forecasting

Consider a stationary time series with mean µ and autocovariance function γ(h) and
the following situation: given observations of X1, . . . , Xn we want to form the best linear
predictor PnXn+h = a0 +a1Xn+ · · ·+anX1 of the future process value Xn+h, h > 0. What
should be meant by “best”? Here we take “best” to mean that the mean squared error

E
[
(Xn+h − PnXn+h)2

]
(7)

is minimized. Fortunately, minimizing (7) is relatively straightforward since (7) is a
differentiable convex function of the vector of coefficients (a0, a1, . . . , an). The coeffi-
cients minimizing the mean squared error are found by computing the partial deriva-
tives of (7) with respect to the aks, setting the partial derivatives to zero, and finally
solving the obtained linear equation system. With X = (Xn, Xn−1, . . . , X1)′, ΣX,Xn+h

=
(Cov(Xn, Xn+h), . . . ,Cov(X1, Xn+h))′ and ΣX and µX denoting the covariance matrix and
mean vector of X, respectively, the unique solution takes the form

a = Σ−1
X ΣX,Xn+h

and a0 = µ− a′µX .(8)

Notice that minimizing the mean squared error is equivalent to solving a standard linear
regression problem: regressing Xn+h onto the regressors Xn, Xn−1, . . . , X1. The solution is
identified as the solution to the so-called normal equations. Moreover, from (8) it follows
that

Cov(Xn+h − PnXn+h, Xk) = 0 for k = 1, . . . , n.(9)

This statement can be verified as follows. Clearly, Σ′X,Xn+h
= Σ′X,Xn+h

Σ−1
X ΣX = 0. In

particular, the kth component of the row vector on the left-hand side equals zero:

(Σ′X,Xn+h
)k − Σ′X,Xn+h

Σ−1
X ΣX,Xk

= 0,

which is a way of writing Cov(Xn+h, Xk)−Cov((Σ−1
X ΣX,Xn+h

)′X,Xk) = 0 or equivalently
Cov(Xn+h − PnXn+h, Xk) = 0.

Since E[PnXn+h] = E[Xn+h] the minimal mean squared error is

E
[
(Xn+h − PnXn+h)2

]
= Var(Xn+h − PnXn+h)

= Var(Xn+h) + Var(PnXn+h)− 2Cov(Xn+h, PnXn+h)

= Var(Xn+h) + (Σ−1
X ΣX,Xn+h

)′ΣXΣ−1
X ΣX,Xn+h

− 2(Σ−1
X ΣX,Xn+h

)′ΣX,Xn+h

= Var(Xn+h)− (ΣX,Xn+h
)′Σ−1

X ΣX,Xn+h
.(10)

Since the process is stationary with constant mean µ and autocovariance function γ(h),
(8) can be written as

a = Γ−1
n γn(h) and a0 = µ

(
1−

n∑
k=1

ak

)
,(11)
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where Γn = [γ(j − k)]nj,k=1 and γn(h) = (γ(h), γ(h+ 1), . . . , γ(h+n− 1))′, and (10) can be
written as

E
[
(Xn+h − PnXn+h)2

]
= γ(0)− γn(h)′Γ−1

n γn(h)

= γ(0)(1− ρn(h)′R−1
n ρn(h)),

where Rn = [ρ(j − k)]nj,k=1 and ρn(h) = (ρ(h), ρ(h+ 1), . . . , ρ(h+ n− 1))′. We notice that,
hardly surprising, large absolute values for the autocorrelations make the mean squared
prediction error small.

Example 5.1. Recall from (4) that Γpφ = γp describes the relation between the coefficients
and the autocovariances of a causal AP(p) process

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt, {Zt} ∼WN(0, σ2).

However, from (11) we know that the best linear predictor of Xn+1 based on Xn, . . . , X1

is PnXn+1 = a0 + a1Xn + · · · + anX1, where Γna = γn, where γn = γn(1). If n ≥ p,
then a = (φ1, . . . , φp, 0, . . . , 0)′ therefore gives the best linear predictor of Xn+1 based on
Xn, . . . , X1, i.e.

PnXn+1 = φ1Xn + · · ·+ φpXn−p+1.(12)

Is there a similar nice expression for PnXn+h for h > 1? The answer is yes. Similar to (9)
it holds that

Cov(Xn+h − Pn+h−1Xn+h, Xk) = 0 for k = 1, . . . , n.

Therefore, Pn(Xn+h − Pn+h−1Xn+h) = E[Xn+h − Pn+h−1Xn+h]. Since E[PjXn+h] =
E[Xn+h] for j = 1, . . . , n+ h− 1, we find that

PnXn+h = PnPn+h−1Xn+h.(13)

From (12) we know that

Pn+h−1Xn+h = φ1Xn+h−1 + · · ·+ φpXn+h−p.

Inserting this expression into (13) gives

PnXn+h = φ1PnXn+h−1 + · · ·+ φpPnXn+h−p

which provides us with a nice recursive formula for the computing the h-step best linear
predictor for an AR(p)-process.

6. The partial autocorrelation function

In Section 5 we used the notation PnXn+h for the best linear predictor of Xn+h based
on X1, . . . , Xn, i.e. the random variable of the form a0 +a1Xn + · · ·+anX1 that minimizes
the mean squared error E

[
(Xn+h − PnXn+h)2

]
. It is more convenient to use the notation

P (Xn+h | X1, . . . , Xn) instead of PnXn+h if we want also to consider the best linear pre-
dictor based on some subset of {X1, . . . , Xn} or some other set of random variables. Now
this notation is used to define the partial autocorrelation function α(h) of a stationary time
series.
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The partial autocorrelation function α(h) at lag h of a stationary time series {Xt} is
given by

α(h) =

{
Cor(X2, X1), h = 1,
Cor(Xh+1 − P (Xh+1 | X2, . . . , Xh), X1 − P (X1 | X2, . . . , Xh)), h ≥ 2.

(14)

From (11) we know that the best linear predictor of Xn+1 based on Xn, . . . , X1 is PnXn+1 =
an0 + an1Xn + · · · + annX1, where Γnan = γn with γn = γn(1) and an = (an1, . . . , ann)′.
Corollary 5.2.1 in [1] establishes that α(n) = ann for n ≥ 1.

The partial autocorrelation function is a useful tool for determining the order of an
AR(p) process. From Example 5.1 we know that for a causal AR(p) process,

P (Xh+1 | X2, . . . , Xh) = φ1Xh + · · ·+ φpXh−p+1 if h− p+ 1 ≥ 2.

Hence, for h > p,

α(h) = Cor(Xh+1 − P (Xh+1 | X2, . . . , Xh), X1 − P (X1 | X2, . . . , Xh))

= Cor(Zh+1, X1 − P (X1 | X2, . . . , Xh))

= 0.
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