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Introduction: Optimal Estimation of a Random Variable

In the preceding lectures of sf2943 we have been dealing with the various of
instances of the general problem of estimating X with a linear combination
a1Y1 + . . .+ aNYN selecting the parameters a1, . . . , aN so that

E
[
(X − (a1Y1 + . . .+ aNYN))

2
]

(1)

is minimized (Minimal Mean Squared Error). The following has been
shown.
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Introduction: Optimal Solution

Suppose Y1, . . . ,YN and X are random variables, all with zero means, and

γmk = E [YmYk ] ,m = 1, . . . ,N; k = 1, . . . ,N

(2)

γom = E [YmX ] ,m = 1, . . . ,N.

then
E
[
(X − (a1Y1 + . . .+ aNYN))

2
]

(3)

is minimized if the coefficients a1, . . . , aN satisfy the Wiener-Hopf
equations requiring the inversion of an N × N -matrix,

N

∑
k=1

akγmk = γom;m = 1, . . . ,N. (4)
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Introduction: Wiener-Hopf Equations

The equations
N

∑
k=1

akγmk = γom;m = 1, . . . ,N. (5)

are often called the Wiener-Hopf Equations.
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Norbert Wiener 1894 -1964 ; Professor of Mathematics at

MIT.
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Rudolf E. Kalman

The Kalman filter has brought a fundamental reformation in the classical
theory of time series prediction originated by N. Wiener. The recursive
algorithm (to be derived) was invented by Rudolf E. Kalman1. His original
work is found in [3].

1b. 1930 in Budapest, but studied and graduated in electrical engineering in USA,

Professor Emeritus in Mathematics at ETH, the Swiss Federal Institute of Technology in

Zürich.
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U.S. President Barack Obama (R) presents a 2008

National Medal of Science to Rudolf Kalman (L) An East
Room ceremony October 7, 2009 at the White House in
Washington.
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Introduction: Additional Samples

We augment the notations by a dependence on the number of data points,
N, as

ẐN = a1(N)Y1 + . . .+ aN(N)YN .

Suppose now that we obtain one more measurement, YN+1. Then we need
to find

ẐN+1 = a1(N + 1)Y1 + . . .+ aN+1(N + 1)YN+1.

In principle we can by the above find a1(N + 1), . . . , aN+1(N + 1) by
solving the Wiener-Hopf equations requiring the inversion of an
N + 1× N + 1 -matrix,

N+1

∑
k=1

ak(N + 1)rmk = rom;m = 1, . . . ,N + 1. (6)

but if new observations YN+1,YN+2, . . . are gathered sequentially in real
time, this will soon become practically unfeasible.
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Kalman Filtering

Kalman filtering is a technique by which we calculate ẐN+1 recursively
using ẐN , and the latest sample YN+1. This requires a dynamic state
space representation for the observed time series Y 7→ Yn with
X 7→ Xn as the state process. We consider the simplest special case.
The Kalman Recursions are usually established for multivariate time series
applying matrix equations, see, e.g., pp. 137 − 142 in [5]. However, some
of the basic principles can be made intelligible by a simpler approach
involving only scalar time series2. The presentation in this lecture is to a
large degree based on the treatment in [2] .

2R.M. du Plessis: Poor Man,s Explanation of Kalman Filtering. North American

Rockwell Electronics Group, June 1967
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The State Model (1): AR(1)

The state model is AR(1), i.e.,

Xn = φXn−1 + Zn−1, n = 0, 1, 2, . . . , (1)

where {Zn} is a white noise with expectation zero, and |φ| ≤ 1 (so
that we may regard Zn−1 as non correlated with Xn−1,Xn−2, . . .). We
have

RZ (k) = E [ZnZn+k ] = σ2 · δ0,k =

{
σ2 k = 0
0 k 6= 0

(2)

We assume that E [X0] = 0 and Var(X0) = σ2
0 .
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The Obseravtion Equation (2): State plus Noise

The true state Xn is hidden from us, we see Xn with added white
measurement noise Vn, or, as Yn in

Yn = cXn + Vn, n = 0, 1, 2, . . . , (3)

where

RV (k) = E [VnVn+k ] = σ2
V · δ0,k =

{
σ2
V

k = 0
0 k 6= 0

(4)

The state and measurement noises {Zn} and {Vn}, respectively, are
independent.
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A Special Case: Poor Man’s Kalman Filter (PMKF)

Assume now in (1) that φ = 1 and σ2 = 0, i.e.,

Xn = X0, n = 0, 1, . . . , (5)

We take that c = 1, so that

Yn = X0 + Vn, n = 0, 1, 2, . . . , (6)

This is the statistical model of several measurements of one random
variable. We shall obtain the Kalman recursions for estimating X0 using
sequentially Y0,Y1, . . . ,Yn, . . . , as a special case of the Kalman predictor
of Xn in (1) (to be derived).
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Recursive Prediction

We want to estimate Xn in (1) using Y0, . . . ,Yn−1 accrued according to
(3), so that

E
[
(Xn − (a1(n)Yn−1 + . . .+ an(n)Y0))

2
]

(7)

is minimized. Next, we obtain Yn and want to estimate Xn+1 using
Y0, . . . ,Yn so that

E
[
(Xn+1 − (a1(n+ 1)Yn + . . .+ an+1(n+ 1)Y0))

2
]

(8)

is minimized.
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Recursive Prediction

Let us set
X̂n+1

def
= a1(n+ 1)Yn + . . .+ an+1(n+ 1)Y0

or

X̂n+1 =
n+1

∑
k=1

ak(n+ 1)Yn+1−k , (9)

and
X̂n

def
= a1(n)Yn−1 + . . .+ an(n)Y0

or

X̂n =
n

∑
k=1

ak(n)Yn−k . (10)

As stated above, a1(n+ 1), . . . , an+1(n+ 1) satisfy the Wiener-Hopf
equations

n+1

∑
k=1

ak(n+ 1)E [YmYn+1−k ] = E [YmXn+1] ;m = 0, . . . , n. (11)
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Recursive Prediction: the road map

The road map is as follows:

We express ak(n+ 1) for k = 2, . . . , n+ 1 recursively as functions of
ak(n)s.

We show that

X̂n+1 = φX̂n + a1(n+ 1)
(
Yn − cX̂n

)
,

We find a recursion for

en+1 = Xn+1 − X̂n+1,

We determine finally a1(n+ 1) by minimizing E
[
e2
n+1

]
.
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Two Auxiliary Formulas

Lemma

E [YmXn+1] = φE [YmXn] ,m = 0, . . . , n− 1. (12)

and for n ≥ 1

E [YmXn] =
E [YmYn]

c
;m = 0, . . . , n− 1. (13)

Proof: From the state equation (1) we get

E [YmXn+1] = E [Ym (φXn + Zn)]

= φE [YmXn] + E [YmZn] .

Here E [YmZn] =E [Ym] E [Zn] = 0, since Zn is a white noise independent
of Vm and Xm for m ≤ n. Next, from (3)

E [YmXn] = E [Ym (Yn − Vn) /c ]

= E [YmYn] /c ,
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The crucial step

We start from (11), and use (12) and (13) together with the fact that
ak(n):s satisfy the Wiener-Hopf equations

n

∑
k=1

ak(n)E [YmYn−k ] = E [YmXn] ;m = 0, . . . , n− 1. (14)

This lemma still leaves us with one free parameter, i.e., a1(n+ 1), which
will be determined in the sequel.
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The crucial step

Lemma

ak+1(n+ 1) = ak(n) (φ − a1(n+ 1)c) ; k = 1, . . . , n. (15)

Timo Koski () Mathematisk statistik 09.05.2013 19 / 70



The crucial step: the proof

Proof: Let m < n. From (9) and (11) we get

E [YmXn+1] =
n+1

∑
k=1

ak(n+ 1)E [YmYn+1−k ] (16)

= a1(n+ 1)E [YmYn] +
n+1

∑
k=2

ak(n+ 1)E [YmYn+1−k ] (17)

We change the index of summation from k to l = k − 1. Then

n+1

∑
k=2

ak(n+ 1)E [YmYn+1−k ] =
n

∑
l=1

al+1(n+ 1)E [YmYn−l ] . (18)
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The crucial step: the proof

On the other hand, (12) yields in the left hand side of (16) that

E [YmXn+1] = φE [YmXn]

and from (13) that

a1(n+ 1)E [YmYn] = a1(n+ 1)cE [YmXn] .
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The crucial step: the proof

Thus we can write (16), (17) by means of (18) as

(φ − a1(n+ 1)c) E [YmXn] =
n

∑
l=1

al+1(n+ 1)E [YmYn−l ] . (19)

Now we compare with the system of equations in (14), i.e.,

n

∑
k=1

ak(n)E [YmYn−k ] = E [YmXn] ;m = 0, . . . , n− 1.

It must hold that

ak(n) =
ak+1(n+ 1)

(φ − a1(n+ 1)c)

or
ak+1(n+ 1) = ak(n) (φ − a1(n+ 1)c) .
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A Recursion with a1(n+ 1) undetermined

We can keep a1(n+ 1) undetermined and still get the following result.

Lemma

X̂n+1 = φX̂n + a1(n+ 1)
(
Yn − cX̂n

)
(20)
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A Recursion with a1(n+ 1) undetermined: proof

Proof: By (9) and the same trick of changing the index of summation as
above we obtain

X̂n+1 =
n+1

∑
k=1

ak(n+ 1)Yn+1−k = a1(n+ 1)Yn +
n

∑
k=1

ak+1(n+ 1)Yn−k

so from (15) in the preceding lemma

= a1(n+ 1)Yn +
n

∑
k=1

ak(n) [φ − a1(n+ 1)c ]Yn−k

= a1(n+ 1)Yn + φ
n

∑
k=1

ak(n)Yn−k − ca1(n+ 1)
n

∑
k=1

ak(n)Yn−k .

From (10) we obviously find in the right hand side

= φX̂n + a1(n+ 1)
(
Yn − cX̂n

)
,

as was to be proved.
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A Recursion with a1(n+ 1) undetermined: proof

We choose the value for a1(n+ 1) which minimizes the second moment of
the state prediction error/innovation defined as

en+1 = Xn+1 − X̂n+1.

First we find recursions for en+1 and E
[
e2
n+1

]
.

Lemma

en+1 = [φ − a1(n+ 1)c ] en + Zn − a1(n+ 1)Vn, (21)

and

E
[
e2n+1

]
= [φ − a1(n+ 1)c ]2 E

[
e2n
]
+ σ2 + a21(n+ 1)σ2

V . (22)
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A Recursion with a1(n+ 1) undetermined: proof

Proof : We have from the equations above that

en+1 = Xn+1 − X̂n+1 = φXn + Zn − φX̂n − a1(n+ 1)
(
cXn + Vn − cX̂n

)

= φ
(
Xn − X̂n

)
− a1(n+ 1)c

(
Xn − X̂n

)
+ Zn − a1(n+ 1)Vn,

and with en = Xn − X̂n the result is (21).
If we square both sides of (21) we get

e2n+1 = [φ − a1(n+ 1)c ]2 e2n + (Zn − a1(n+ 1)Vn)
2 + 2τ,

where
τ = [φ − a1(n+ 1)c ] en (Zn − (a1(n+ 1))Vn)

By the properties above

E [enZn] = E [ZnVn] = E [enVn] = 0

(Note that X̂n uses Xn−1,Xn−2, . . . and is thus uncorrelated with Vn.)
Thus we have E

[
e2
n+1

]
as asserted.
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A Recursion with a1(n+ 1) determined

We can apply orthogonality to find the expression for a1(n+ 1), but the
differentiation to be invoked in the next lemma gives a faster argument.

Lemma

a1(n+ 1) =
φcE

[
e2n
]

σ2
V
+ c2E [e2n ]

. (23)

minimizes E
[
e2
n+1

]
.
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A Recursion with a1(n+ 1) determined: proof

Proof: We differentiate (22) w.r.t. a1(n+ 1) and set the derivative equal
to zero. This entails

−2c [φ − a1(n+ 1)c ] E
[
e2n
]
+ 2a1(n+ 1)σ2

V = 0

or
a1(n+ 1)

(
c2E

[
e2n
]
+ σ2

V

)
= φcE

[
e2n
]
,

which yields (23) as claimed.
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A Preliminary Summary

We change notation for a1(n+ 1) determined in lemma 5, (23). The
traditional way (in the engineering literature) is to write this quantity as
the predictor gain, also known as the Kalman gain K (n) or

K (n)
def
=

φcE
[
e2n
]

σ2
V
+ c2E [e2n ]

. (24)

The initial conditions are

X̂0 = 0,E
[
e20
]
= σ2

0 . (25)

Then we have obtained above that

E
[
e2n+1

]
= [φ −K (n)c ]2 E

[
e2n
]
+ σ2 + K 2(n)σ2

V , (26)

and
X̂n+1 = K (n)

[
Yn − cX̂n

]
+ φX̂n. (27)
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The Kalman Prediction Filter

Proposition

K (n)
def
=

φcE
[
e2n
]

σ2
V
+ c2E [e2n ]

. (28)

E
[
e2n+1

]
= [φ −K (n)c ]2 E

[
e2n
]
+ σ2 + K 2(n)σ2

V , (29)

and
X̂n+1 = K (n)

[
Yn − cX̂n

]
+ φX̂n. (30)

The equations (28) -(30) are an algorithm for recursive computation of
X̂n+1 for all n ≥ 0. This is a simple case of an important statistical
processor of time series data known as the Kalman filter.
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The Kalman Prediction Filter

A Kalman filter is in view of (30) predicting Xn+1 using φX̂n and additively
correcting the prediction by the measured innovations

εn =
[
Yn − cX̂n

]
.

Here εn is the part of Yn which is not exhausted by cX̂n. The innovations
are modulated by the filter gains K (n) that depend on the error variances
E
[
e2n
]
.
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The Kalman Prediction Filter

The recursive nature of the Kalman filter cannot be overemphasized: the
filter processes one measurement Yn at a time, instead of all
measurements. The data preceding Yn, i.e., Y0, . . . ,Yn−1 are summarized
in X̂n, no past data need be stored. Each estimation is identical in
procedure to those that took place before it, but each has a new weighing
factor computed to take into account the sum total effect of all the
previous estimates.
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Block-Diagrams
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Block-Diagrams
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The Kalman Prediction Filter: A Special Case

Assume σV = 0 and c = 1. Then (28) becomes

K (n) = φ (31)

and (29) boils down to
E
[
e2n+1

]
= σ2, (32)

and (30) yields, since c = 1,

X̂n+1 = φYn = φXn. (33)

But this verifies the familiar formula about one-step MSE-prediction of an
AR(1) process.
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Innovations Representation

We can write the filter also with an innovations representation

X̂n+1 = φX̂n + K (n)εn (34)

Yn = cX̂n + εn, (35)

which by comparison with (1) and (3) shows that the Kalman filter follows
equations similar to the original ones, but is driven by the innovations εn
as noise.
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Riccati Recursion for the Variance of the Prediction Error

We find a further recursion for E
[
e2
n+1

]
. We start with a general identity

for Minimal Mean Squared Error estimation. We have

E
[
e2n+1

]
= E

[
X 2
n+1

]
− E

[
X̂ 2
n+1

]
. (36)

To see this, let us note that

E
[
e2n+1

]
= E

[(
Xn+1 − X̂n+1

)2]

= E
[
X 2
n+1

]
− 2E

[
Xn+1X̂n+1

]
+ E

[
X̂ 2
n+1

]
.

Here

E
[
Xn+1X̂n+1

]
= E

[(
X̂n+1 + en+1

)
X̂n+1

]
= E

[
X̂ 2
n+1

]
+ E

[
en+1X̂n+1

]
.

But by the orthogonality principle of Minimal Mean Squared Error
estimation we have

E
[
en+1X̂n+1

]
= 0,

and this proves (36).
Timo Koski () Mathematisk statistik 09.05.2013 37 / 70



Riccati Recursion

We note next writing

εn = Yn − cX̂n = cXn + Vn − cX̂n

= cen + Vn

that
E
[
ε2n
]
= σ2

V + c2E
[
e2n
]
. (37)
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Riccati Recursion for the Variance of the Prediction Error

When we use this formula we obtain from (30) or X̂n+1 = K (n)εn + φX̂n

that
E
[
X̂ 2
n+1

]
= φ2E

[
X̂ 2
n

]
+ K (n)2

(
σ2
V + c2E

[
e2n
])

. (38)

But in view of our definition of the Kalman gain in (28) we have

K (n)2
(
σ2
V + c2E

[
e2n
])

=
φ2c2E

[
e2n
]2

σ2
V
+ c2E [e2n ]

As in [1, p.273] we set
θn = φcE

[
e2n
]
, (39)

and
∇n = σ2

V + c2E
[
e2n
]
, (40)
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Riccati Recursion for the Variance of the Prediction Error

Next we use the state equation (1) to get

E
[
X 2
n+1

]
= φ2E

[
X 2
n

]
+ σ2. (41)

Hence we have by (36), (41) and (38)

E
[
e2n+1

]
= φ2E

[
X 2
n

]
+ σ2 − φ2E

[
X̂ 2
n

]
−

θ2n
∇n

or, again using (36),

E
[
e2n+1

]
= φ2E

[
e2n
]
+ σ2 −

θ2n
∇n

. (42)
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The Kalman Filter with Riccati Recursion

Hence we have shown the following proposition (c.f., [1, p.273]) about
Kalman prediction.

Proposition

X̂n+1 = φX̂n +
θn
∇n

εn. (43)

and if
en+1 = Xn+1 − X̂n+1

then

E
[
e2n+1

]
= φ2E

[
e2n
]
+ σ2 −

θ2n
∇n

, (44)

where
θn = φcE

[
e2n
]
, (45)

and
∇n = σ2

V + c2E
[
e2n
]
. (46)
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PMKF

In PMKF we have φ = 1, c = 1 and σ = 0, we are estimating sequentially
a random variable without time dynamics. We need to rewrite the
preceding a bit, see [5]. First we have

1

E
[
e2
n+1

] = 1

E [e2n ]
+

1

σ2
V

, (47)

since in this case (44) becomes

E
[
e2n+1

]
= E

[
e2n
]
−

E
[
e2n
]2

σ2
V
+ E [e2n ]

,

and by some elementary algebra

E
[
e2n+1

]
=

σ2
V
E
[
e2n
]2

σ2
V
+ E [e2n ]

.

From this
1

E
[
e2
n+1

] =
σ2
V
+ E

[
e2n
]

σ2
V
E [e2n ]

2 =
1

E [e2n ]
+

1

σ2
V

.
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PMKF

Then iteration gives that

1

E [e2n ]
=

1

σ2
0

+
n

σ2
V

. (48)

We need in view of (43) to compute the Kalman gain for the case at hand,
or

θn
∇n

=
E
[
e2n
]

σ2
V
+ E [e2n ]

=
1

σ2
V

E [e2n ]
+ 1

,

where we now use (48) to get

=
1

σ2
V

σ2
0
+ n+ 1

=
σ2
0

σ2
V
+ σ2

0 (n+ 1)
,
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PMKF

Thus we have found the Poor Man’s Kalman Filter

X̂n+1 = X̂n +
σ2
0

(n+ 1)σ2
0 + σ2

V

(
Yn − X̂n

)
. (49)

The poor man’s cycle of computation: You have computed X̂n.

You receive Yn.

Update the gain to
σ2
0

(n+1)σ2
0+σ2

V

Compute X̂n+1 by adding the correction to X̂n.

X̂n+1 7→ X̂n.
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Riccati Recursion for the Variance of the Prediction Error

Recall (44), or,

E
[
e2n+1

]
= φ2E

[
e2n
]
+ σ2 −

θ2n
∇n

, (50)

The recursion in (50) is a first order nonlinear difference equation known
as the Riccati equation3 for the prediction error variance.

3named after Jacopo Francesco Riccati, 1676 - 1754, who was a mathematician born

in Venice, who wrote on philosophy, physics and differential equations.

http://www-groups.dcs.st-and.ac.uk/∼history/Biographies/Riccati.html
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The Stationary Kalman Filter

We say that the prediction filter has reached a steady state, if E
[
e2n
]
is a

constant, say P = E
[
e2n
]
, that does not depend on n. Then the Riccati

equation in (44) becomes a quadratic algebraic Riccati equation

P = φ2P + σ2 −
φ2c2P2

σ2
V
+ c2P

, (51)

or

P = σ2 +
σ2
V

φ2P

σ2
V
+ c2P

.
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The Stationary Kalman Filter

and further by some algebra

c2P2 +
(
σ2
V − σ2

V φ2 − σ2c2
)
P − σ2σ2

V = 0. (52)

This algebraic second order equation is solvable by the ancient formula of
Indian mathematics. We take only the non negative root into account.
Given the stationary P we have the stationary Kalman gain as

K
def
=

φcP

σ2
V
+ c2P

. (53)
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Example of Kalman Prediction: Random Walk Observed

in Noise

Consider a discrete time Brownian motion (Zn is a Gaussian white noise)
or a random walk

Xn+1 = Xn + Zn, n = 0, 1, 2, . . . ,

observed in noise
Yn = Xn + Vn, n = 0, 1, 2, . . . ,
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Examples of Kalman Prediction: Random Walk Observed

in Noise

Then

X̂n+1 = X̂n +
E
[
e2n
]

σ2
V
+ E [e2n ]

(
Yn − X̂n

)
.

and

X̂n+1 =

(
1−

E
[
e2n
]

σ2
V
+ E [e2n ]

)
X̂n +

E
[
e2n
]

σ2
V
+ E [e2n ]

Yn.
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Example of Kalman Prediction: Random Walk Observed

in Noise

It can be shown that there is convergence to the stationary filter

X̂n+1 =

(
1−

P

σ2
V
+ P

)
X̂n +

P

σ2
V
+ P

Yn,

where P is found by solving (52).
We have in this example φ = 1, c = 1. We select σ2 = 1, σ2

V
= 1. Then

(52) becomes

P2 − P − 1 = 0 ⇔ P =
1

2
+

√
1

4
+ 1 = 1.618,

and the stationary Kalman gain is K = 0.618.
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Examples of Kalman Prediction: Random Walk Observed

in Noise

In the first figure there is depicted a simulation of the state process and
the computed trajectory of the Kalman predictor.
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Example of Kalman Prediction: Random Walk Observed

in Noise

In the next figure we see the fast convergence of the Kalman gain K (n) to

K = 0.618.
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Example of Kalman Prediction: Exponential Decay

Observed in Noise

Consider an exponential decay, 0 < φ < 1,

Xn+1 = φXn, n = 0.1, 2, . . . ,⇔ Xn = φnX0

observed in noise
Yn = Xn + Vn, n = 0, 1, 2, . . . .

Then there is convergence to the stationary filter

X̂n+1 = φ

(
1−

P

σ2
V
+ P

)
X̂n +

φP

σ2
V
+ P

Yn.
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Example of Kalman Prediction: Exponential Decay

Observed in Noise

We see the corresponding noisy measurements of the exponential decay
with c = 1 , φ = 0.9 σ2 = 0, and σ2

V
= 1.
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Example of Kalman Prediction: Exponential Decay

Observed in Noise

In the figures there is first depicted the state process and the computed
trajectory of the Kalman predictor.
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Example of Kalman Prediction: Exponential Decay

Observed in Noise

With c = 1 , φ = 0.9, σ2 = 0, and σ2
V
= 1 (52) becomes

P2 +
(
1− 0.92

)
P = 0 ⇔ P = 0,

(where we neglect the negative root) and the stationary Kalman gain is
K = 0.
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Example of Kalman Prediction: Exponential Decay

Observed in Noise

In the next figure we see the fast convergence of the Kalman gain K (n) to

K = 0.
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Example of Kalman Prediction

The state process

Xn = 0.6Xn−1 + Zn−1, n = 0, 1, 2, . . . ,

and the observation equation

Yn = Xn + Vn, n = 0, 1, 2, . . . ,

σ2 = 1, σ2
V
= 0.1 ,σ2

0 = 1.
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Example of Kalman Prediction

The time series in red is X̂n, the time series in blue is Xn,

n = 1, 2, . . . , 100.
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Example of Kalman Prediction

The Kalman gain:
0 20 40 60 80 100 120

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Timo Koski () Mathematisk statistik 09.05.2013 60 / 70



PMKF

PMKF, where X0 = −0.9705. Here X̂1000 = −0.9667.
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The Kalman recursions for Prediction: the General Case

Recall the state-space model:

Xt+1 = FtXt +Vt , {Vt} ∼ WN(0, {Qt}),

Yt = GtXt +Wt , {Wt} ∼ WN(0, {Rt}).
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The Kalman recursions for Prediction: the General Case

Linear estimation of Xt in terms of

Y0, . . . ,Yt−1 defines the prediction problem;

Y0, . . . ,Yt defines the filtering problem;

Y0, . . . ,Yn, n > t, defines the smoothing problem.
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The Kalman recursions: the General Case

The predictors X̂t

def
= Pt−1(Xt) and the error covariance matrices

Ωt

def
= E [(Xt − X̂t)(Xt − X̂t)

′]

are uniquely determined by the initial conditions

X̂1 = P(X1 | Y0), Ω1
def
= E [(X1 − X̂1)(X1 − X̂1)

′]
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The Kalman recursions: the General Case

and the recursions, for t = 1, . . .,

X̂t+1 = FtX̂t + Θt∆
−1
t (Yt − GtX̂t) (54)

Ωt+1 = FtΩtF
′
t +Qt − Θt∆

−1
t Θ′

t , (55)

where

∆t = GtΩtG
′
t + Rt ,

Θt = FtΩtG
′
t .

The matrix Θt∆
−1
t is called the Kalman gain.
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Notes and Literature on the Kalman Filter

The Kalman filter was first applied to the problem of trajectory estimation
for the Apollo space program of the NASA (in the 1960s), and
incorporated in the Apollo space navigation computer. Perhaps the most
commonly used type of Kalman filter is nowadays the phase-locked loop
found everywhere in radios, computers, and nearly any other type of video
or communications equipment. New applications of the Kalman Filter
(and of its extensions like particle filtering) continue to be discovered,
including for radar, global positioning systems (GPS), hydrological
modelling, atmospheric observations e.t.c..
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Wikipedia on the Kalman Filter

Kalman filters have been vital in the implementation of the navigation
systems of U.S. Navy nuclear ballistic missile submarines, and in the
guidance and navigation systems of cruise missiles such as the U.S. Navy’s
Tomahawk missile and the U.S. Air Force’s Air Launched Cruise Missile. It
is also used in the guidance and navigation systems of the NASA Space
Shuttle and the attitude control and navigation systems of the
International Space Station.
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Notes and Literature on the Kalman Filter

A Kalman filter webpage with lots of links to literature, software, and
extensions (like particle filtering) is found at
http://www.cs.unc.edu/∼welch/kalman/
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Notes and Literature on the Kalman Filter

It has been understood only recently that the Danish mathematician and
statistician Thorvald N. Thiele4 discovered the principle (and a special
case) of the Kalman filter in his book published in Copenhagen in 1889
(!): Forelæsningar over Almindelig Iagttagelseslære: Sandsynlighedsregning
og mindste Kvadraters Methode. A translation of the book and an
exposition of Thiele

′
s work is found in [4].

41838−1910, a short biography is in

http://www-groups.dcs.st-ac.uk./∼history/Biographies/Thiele.html
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Notes and Literature on the Kalman Filter
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