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1 Introduction & General Instructions

The purpose of this set of homework assignments is to make the student
familiar with the practical handwork and theoretical effort required in time
series analysis of real life data.

The homework is to be submitted in the form of two written reports, that
are called Report A and Report B. It is recommended that you work
in groups of three to produce the piece of studies required for the
reports.

1.1 Structure of the Reports

Report A consists of parts A.1 and A.2.

• A.1 ’Choose your own time series’

• A.2 ’Classical Time Series Modeling ’

– A.2.1 Sea level in Stockholm 1825−1984

– A.2.2 Simulation of ARMA processes

Report B consists of parts B.1 and B.2.

• B.1 ’Analysis of your own time series’. Here the group does
an analysis of the time series chosen in A.1. by three different
methods.



• B.2 ’Parameter estimation, ARCH and GARCH proces-
ses’

– B.2.1 Statistical estimation for Timeseries.

– B.2.2 ARCH and GARCH processes as models for foreign ex-
change rates

The detailed description of each of these assignments will be given in section
2 and section 3 below.

1.2 Software for Time Series Analysis sf2945

We recommend that the home work be done in MATLABR. The necessary
course related .m-files, not generally available in MATLAB, can be downlo-
aded from
http://www.math.kth.se/matstat/gru/sf2945/homeworks 2010.html.

The data files are also accessed via this page.
MATLAB has, in fact, an extensive toolbox, System Identification Tool-

box, which can be used for analysis and modeling of time series. If you and
have access to this toolbox, it is permitted to use this. There are also se-
veral .m functions in MATLAB Signal Processing Toolbox (statistical signal
processing) that may turn out to be be useful. Please report explicitly, which
software (or toolboxes) you have used.

Every legitimate copy of the course textbook supplies a CD-ROM with a
time series package ITSM2000. This contains, e.g., routines for model choice.
The course syllabus does not allot time for any training in using ITSM2000,
but you are allowed use it on your own in these homeworks.

1.3 How do You Submit Your Two Reports ?

• Each group (of three) writes and submits two joint reports. The names
(first name, family name) and Swedish personnummer of each member
of the group are to be given on the cover page of both reports.

• Report A and Report B are submitted as two different documents.
Files in the pdf -format are preferred, but this is not compulsory. The
reports are to have the structure given above, e.g., Report A contains
A.1, A.2.: A.2.1, A.2.2..
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• The reports are to be sent by attachment to an email to the address
tryd math kth se. The subject of the email is to be of the form:

reportAsf2945xyz

reportBsf2945xyz

where x,y,z are the family names of the students in the group.

1.4 Deadlines for Submission of Reports

Report A to be submitted by 24.00, Thursday 18th of November,
2010

Report B to be submitted by 24.00, Thursday 9th of December,
2010

1.5 Warning for Websupported Plagiarism

Please do not try this.
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2 Report A

2.1 Report A.1

Choose a time series according to you own interests. If you have to write the
data by hand into a file it is enough to use around 100 values. You may get
the data from any source except from the course textbook by Brockwell and
Davis Introduction to Time Series and Forecasting. Further it must be real
data and not randomly generated data. You might for instance find data on
the web. The web page
http://www.robjhyndman.com/TSDL/

of the Time Series Data Library by Rob J. Hyndman from Monash Univer-
sity is a good source.
http://www.math.kth.se/matstat/links.htm#Data

has links to other repositories of data sources that can be used for A.1..

Recommendation: Financial and economic time series, especially those
dealing with the stock exchange (börskurserna) and the business cycle (kon-
junkturcykeln), are known to be very difficult to analyze for a novice in the
field. Hence you should not choose this kind of data.

Your report on Part A.1 must contain a description of the data
(including where you found it) and a plot of the raw data set.

Your task (to be reported in Report B.1) will be to, during the course and
invoking what you have learned, do three different analyses of the data. You
may very well do these analyses at the same time when you do the other
parts of your homeworks. Find more on this in section 3.1 below.
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2.2 Report A.2

2.2.1 Report A.2.1: Sea Level in Stockholm, 1825 to 1984.

This homework consists of making a classical decomposition of data of sea
level in Stockholm, 1825 to 1984.

The sea level in Stockholm has been measured since 1774, the longest sea
level measurement series in the world. From 1825 there exists a complete
series of data from every month. This series will be used here. At the begin-
ning the measurement was done at Slussen, now the instrument is placed on
Skeppsholmen. The first figure gives the total series from 1825 to 1984, the
second one is a ten years series.
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The trend in the series is an effect of the land elevation.

In this homework, the m-files acf.m, acvf.m, diffd., smoothma.m, smooth-
pf.m, seascomp.m, ljungbox.m and ranktest.m can be used. The data can be
found in the MATLAB data-file sealevel.mat or in the text-files sealevel.dat
and sldate.dat. Save them in a appropriate library, where MATLAB can find
them.

The text-file sldate.dat also contains the months and years of the data, as
first row and column. sealevel.dat only contains the data and is easier to read
into MATLAB. You can use the command fscanf to read the textfile data:
However it is easier to use the .mat-file directly.

fid=fopen(’sealevel.dat’,’r’);
sl=fscanf(fid,’%f’);

will read the data into the column vector sl. You may need to specify the
path to the sealevel.dat file in the first command.

For classical decomposition, see Brockwell, section 1.5.

1. The total data vector sl consists of 1920 data. Select 600 of them, repre-
senting 50 consecutive years. Begin at a random time. Store the selected
data in appropriate vector. Use then the m-file acf.m to compute and
plot the autocorrelation function of the selected data. The command
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y=acf(x) will compute the autocorrelation function of the time series
x. Remember that the index n represents the correlation ρ(n + 1) as
the index of vectors in MATLAB begin with 1 and not 0.

The command y=acf(x,plott) where plott is an arbritary number also
draws a plot, with lines ±1.96/

√
n, see Brockwell, example 1.4.6 page 20

for explanation. Comment your plot. What conclusions can you draw.
Does the plot say something about a period?

2. For estimating trend and season factor, use first Method S1, described
on page 31 in Brockwell. What do you think is an appropriate period
p?

3. Estimate the seasonal component st and the deseasonalized data vector
dt.

The MATLAB-command [d,s]=seascomp(x,p) does that, where x is the
original data vector and p the period. Plot st and dt.

4. Test the deseasonalized data d for remaining trend, by using the Rank
Test described in Brockwell page 37. Use the m-file ranktest , which
compute, in Brockwells terminology,

|P − µP |
σP

What is the result of the test? Shall the hypothesis ”no trend” be
rejected?

5. Estimate the trend in the deseasonalized data vector d by using the
m-file smoothpf.

[c,m,z]=smoothpf(x,grad) will estimate the trend in data vector x by
an appropriate polynom of degree grad. The coefficients of the polynom
in coeff will appear in c. on. m will be the trend vector and z estimated
residual x−m. Try a linear and a quadratic trend. Plot the residuals.
Does a quadratic trend seem to be a better model than a linear one?
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6. Test the the residual series z in 5 for independence by using Ljung-Box
test, page 36 in Brockwell. Use h=40. The test statistics can be com-
puted by the m-file ljungbox. What is the result? Use 1% significance
level.

7. Make plots of the original data, the deseasonalized data dt and the
estimated seasonal component st.
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2.2.2 Report A.2.2: Simulation of ARMA -processes

This homework consists of simulation and analysis of some ARMA-processes.
We shall first provide some help with the pertinent files and then give the
assignments.

Description of MATLAB files
You can use the following m-files.

simarma simulates an ARMA(p, q) process. The m-file first simulates nor-
mal distributed observations, and from them an ARMA-process is simulated.
The syntax is // y=simarma(fi, theta,n, s2, seed)
where fi is the vector (in Brockwell notation, see e.g. page 83) fi=[φ1φ2 . . . φp]
and theta=[θ1 θ2 . . . θq]. n is the number of observations to be generated and
s2 the white noise variance σ2. seed is a seed for the random generation and
must be set for every simulation. This makes it possible to regenerate the
same series. In all simulations you have to report the seed. y will be a vector
with all simulated observations.

To generate an AR-process you just have to put theta=0 and if fi=0 a MA-
process is simulated. We want to simulate causal processes, which implies that
a stationary solution exists.

causal tells you if the defined process is causal. The syntax is causal(fi),
where fi as above.

predarma gives prediction of an ARMA-process. The syntax is
[y, se2]=predarma(x,fi,theta,sigma2,h),
where x is the vector of known observations, fi and theta as above. sigma2 is
the white noise variance and h is the forward time step, the time ahead that
prediction is made. y is the predicted value and se2 the mean square error of
the prediction. See chapter 3.3. In Brockwell notation, x = [X1, X2, . . . , Xn]
and y = PnXn+h.

innov is used in predarma.

armaacvf gives the autocovariance function of an ARMA process. Do not
mix this up with the m-file acvf, which gives the sample autocovariance fun-
ction, based on a time series. The syntax is y=armaacvf(fi,theta,N,sigma2).
fi and theta as above. sigma2 is the white noise variance σ2 and N is maxi-
mal lag, that is the covariance is computed up to h = N . The values of the
autocovariance function is found in the vector y. For autocovariance function
of an ARMA process see Brockwell section 3.2. The autocorrelation function

9



is, as you know, ρ(h) =
γ(h)

γ(0)
, so dividing y above with its first element, gives

the autocorrelation function.

psi is used in armaacvf. psi computes the ψ-parameters in the linear re-
presentation of the process, see Brockwell page 51.

roots2ar computes the AR parameters from the roots in the generating
polynomial. arroots is the inverse, it gives the roots of the generating function.

AR(2)-process, ARMA(2,2)-process
The defining equation is

Xt − φ1Xt−1 − φ2Xt−2 = Zt

Read example 3.2.4 page 91 in Brockwell. A case is missing in that example,
namely ξ1 = ξ2, |ξ| = |ξ1| = |ξ2| > 1. In that case the process is causal and
the covariance function is

σ2ξ|h|
( |h|
ξ2 − 1

+
ξ2(3ξ2 − 1)

(ξ2 − 1)2

)

1. Choose two complex conjugate roots of the generating function, so that
the resulting process is causal. Choose the roots so that their modulus (ab-
solute values) are near 1. Compute φ1 and φ2 according to example 3.2.4
and simulate 100 observations of the process and draw a plot. The simplest
way to compute the coefficients from the roots is to use the Matlab func-
tion roots2ar. You can calculate with complex numbers in Matlab as usual,
just write a + bi where a and b are real numbers. You can also use polar
coordinates, r ∗ exp(−φi) where r and φ are real numbers.

Caution! If you chose two conjugate complex roots and compute φ1 and φ2

according to example 3.2.4 they can be complex with small imaginary part,
due to numerical imprecision. In that case take the real part of it.

Plot the autocorrelation function of the process, and also compute the
sample autocorrelation function based on the simulations. Plot this sample
correlation function and compare the plots.

2. Choose two different real roots of the characteristic function, and make
plots of simulations, and autocorrelation functions as in 1.

3. Compare the autocorrelation plots in 1 and 2. What is the main quali-
tative difference?
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4. Consider the case 1, two conjugate complex roots. The autocovariance
function is given in (3.2.12) on page 91. The expression for the autocorrelation
function is quite simple. Motivate that it is

r−|h| sin(|h|θ + ψ)

sin(ψ)

where ψ as in (3.2.13) and the notations as in the example.

If one wants to model a process with strong positive dependence, that is
with autocorrelation function near 1 for a range of h:s, how should r and θ in
(3.2.12) be chosen? Choose a θ and try with two or three different r, so that
you have processes with various strong positive dependence. Plot simulations
of the processes (100 values) and plot the autocorrelation functions and the
sample autocorrelations functions.

5. Simulate 10 observations x1, x2, . . . , x10 of a ARMA(2,2) process with
parameters φ1 = 0.4, φ2 = 0.5, θ1 = 1, θ2 = 0.8. Check that the process
is causal. Make prediction up to time 20 from these 10 observations. Plot
the prediction series and the root mean square errors of the predictions,√
E

(
(X10+h − P10X10+h)2

)
, h = 1, 2, . . . , 10.

6. The process in 5 is a normal process. What is the expected value of
X11− X̂11? Show that the mean square error E

(
(X11 − X̂11)

2
)

is equal to the

variance V (X11 − X̂11). See page 65 in Brockwell. Note that the mean square
error is computed in 6. Show that

P (X̂11 − λα/2r11 ≤ X11 ≤ X̂11 + λα/2r11) = 1 − α

where r11 is the root mean square error

√
E(X11 − X̂11)2 of X̂11.

The interval

(X̂11 − λα/2r11, X̂11 + λα/2r11)

is a prediction interval for X11 with confidence level 1 − α. Compute this
interval.
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3 Report B

3.1 Report B.1

Do three different analyses of the data you chose and reported in A.1.. Here
the field is open for own insights and skill in analysis. Note, however,
that three different methods of elimination of trend and seasonal
components do not constitute an acceptable study.

The idea behind this homework is to get an understanding of the multitude
of problems which may – and will – occur when you are working with real
data not chosen in the classroom mainly to fit the methods. These kinds of
difficulties are rarely discussed in the textbooks, which, as is proper as such,
focus on the mathematical theory and algorithms. This is the reason why
you must choose your time series at an early stage of the course.
This is mandatory: You may have happened to select a difficult
set of data, but, nevertheless, You are NOT allowed to change the
time series you earlier reported in A.1, when you get to do the
work required for B.1. !

3.2 Report B.2

3.2.1 Report B.2.1: Estimation of Parameters of AR- and ARMA-
processes

The data you shall use, are in the files temp.dat, timech.dat, and el.dat

The data in el.dat is the monthly production of Australia’s production of
electricity in GWh Jan 1956 - August 1995. The data in temp.dat are the
monthly mean temperature in New York City, Jan 46 - Dec 59. The data in
timech.dat are the annual change in earth’s rotation 1821-1970 (10−5 s). The
new m-files are burg, pacf, yuwaest, pergram, specdens, specarma, boxcox and
boxcoxf.

1. Consider first monthly temperatures in the variable temp. Plot the
temperatures. Plot the periodogram (see Brockwell p 121). Make one
plot with no smoothing (no weights), and one with the weights [3 3
2 1] ([W(0) W(1) W(2) W(3)]=[3 3 2 1]/15), see Brockwell p 125).
Use the m-file pergram. pergram(x,w,plott) gives the periodogram. If
two arguments, the the plot is drawn with no weight function if w is
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a scalar (number). If w is a vector, this is the weights w(0), w(1), . . . .
The weight is symmetric and automatically normalized (you need not
to enter weights with sum 1).

You shall produce the two plots and explain why the period seems to
be 12 in the plots.

2. Compute the autocovariance function of the temp series. Use the m-file
acvf. Then compute the partial autocovariance function. pacf(g,n,plott,cl)
computes the PACF (see Brockwell p 94). pacf(g) computes the PACF
up to lag equal to the number of observations, g is the ACVF. pacf(g,n)
computes PACF up to lag n. pacf(g,n,plott) where plott is an arbitrary
number also draws a plot. If you put the second argument n = [] then
the PACF is computed and plotted up to lag equal to number of ob-
servations. At last, pacf(g,n,plott,cl), where cl is an arbitrary number,
also draws 95% probability bounds (see Brockwell e.g. p 97). The PACF
plot suggests an AR-model. Fit an appropriate order p (see Brockwell
example 3.2.6 and 3.2.9 on p 95 and 99).

You shall produce the PACF plot with probability lines, give the order
of the AR process you think is appropriate and motivate your choice
of the order.

3. Use yuwaest to estimate the parameters in the model in 2. The syntax
is

[fi,s2,C] = yuwaest(y,p) where

y is the time series,

fi is the autoregressive model parameter ,

s2 is the estimated WN variance and

C is the estimated covariance matrix of the estimated parameter vector
fi. The diagonal in C thus contains the estimated variances of the
estimated parameters.

Give the estimates and approximate 95% confidence limits of the pa-
rameter φ1.

You shall give the estimations of the φ parameters and the estimated
WN variance σ2. Give also the confidence interval above.
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4. Compute and plot the spectral density for the AR(p) process fitted in 3.
Use specarma. Type help specarma for the syntax. Find the dominating
period from the maximum of the spectral density.

You shall produce the plots and again explain the period.

5. Plot the data in timech. There seems to be a linear trend, which sug-
gests that an ARIMA model could be appropriate (Brockwell chapter
6). We shall study the difference series Yt = (1 − B)Xt. Use the m-file
diffd to construct the series yt. Compute the autocovariance function of
yt and after that the PACF. Model this series as coming from a suitab-
le AR-process. Estimate the parameters, and construct 95% confidence
limits for one of the parameters.

You shall produce a plot of the PACF, explain your choice of model, and
give the estimated parameters together with one confidence interval.
You shall also express the ARIMA model of the original time series
{Xt} that is fitted (see Brockwell section 6.1), that is in the form

Xt = a1Xt−1+a2Xt−2 + · · ·+ b1Zt + · · ·+ bqZt−q+1

The parameters a1, a2, . . . shall be written as numbers and observe that
Xt only appears on the left side.

6. The data file el.mat (or el.dat) contains Australia monthly production
of electricity in GWh Jan 1956 - August 1995. Plot the time series. You
see that the production fluctuates more and more and thus seems to be
non-stationary. One can use a transformation of the data to make the
series more compatible with a stationary series, se Brockwell page 188.
A Box-Cox transformation is given by the logarithm of the data or by a
power of the data. In most common cases the variance or the standard
deviation of the data seems to be proportional to the mean. To stabilize
the fluctuations one in these cases use the square root or the logarithm
of the data as the transformation, in Brockwells notation, λ is 0 or 1/2.

The matlab file boxcox is a script that gives a plot in which you can
enter the data and the λ value. You can, by using the slide, see how
the fluctuations stabilizes when entering a new λ, which can be done
manually or by a slide. The script boxcox uses the m-file boxcoxf. Make
an appropriate transformation and then by some method eliminate the
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trend and the seasonality. Plot the estimated dual (see homework 1
clause 5.)

3.2.2 Report B.2.2: ARCH and GARCH models for modeling fi-
nancial time series

The purpose of this homework is to understand the ARCH and GARCH
models for modeling financial time series.

The data you shall use, is in the file logret DEM USD.mat.

The data in logret DEM USD.mat are daily logreturns of foreign exchange
rates (FX rates) for the German mark (DEM) quoted against the US dollar
(USD). If St is the FX rate between the German mark and the US dollar at
day t then the logreturn Xt over day t is Xt = log(St+1/St) (log(x) denotes
the natural logarithm with base e).

To load the data into MATLAB use the command:
load logret DEM USD
Then you will get a vector named dem containing the logreturns for the
DEM/USD exchange rate. Note that you have to run MATLAB form the
same directory where you have the file logret DEM USD.mat.

The construction of ARCH and GARCH time series makes it difficult to
explicitly compute interesting quantities that a bank or financial institution
might be interested in, for instance the Value-at-Risk. Therefore simulation
of a fitted model is needed to compute such quantities.

1. Simulate the ARCH(1)-process with different choices of the parame-
ters α0 > 0 and α1 > 0. This can be done using the m-file archsim.
Simulate samples of different length and different starting positions y0.
The command is [y, σ] = archsim(a0, a1, y0, n), where a0, a1 are the
parameters in the ARCH-model, y0 is the starting position and n is
the sample length. The vector y is the resulting ARCH-process and σ
is the volatility process, σt = (α0 +α1X

2
t−1)

1/2. Your homework should
include the following:

(a) One plot of an ARCH-process {Yt} of length n = 500 with para-
meters α0 and α1 < 1, starting at y0 = 0. You should also include
a plot with the corresponding volatility process σt.
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(b) One plot of an ARCH-process {Yt} of length n = 500 with para-
meters α0 and 1 < α1 < 2eγ, starting at y0 = 0.

(c) One plot of an ARCH-process {Yt} of length n = 500 with para-
meters α0 and 2eγ < α1, starting at y0 = 0.

Can you see any qualitative differences between these plots?

In (a) and (b) the distribution of the ARCH process will eventually
converge to a stationary distribution with (a) finite variance and (b)
infinite variance. In (c) it will not converge to a stationary distribution.

2. Simulate the GARCH(1, 1)-process with different choices of the para-
meters α0 > 0, α1 > 0 and β1 > 0. This can be done using the m-file
garchsim. Simulate samples of different length and different starting po-
sitions y0. The command is [y, σ] = garchsim(a0, a1, b1, y0, σ0, n, seed),
where a0, a1 and b1 are the parameters in the GARCH-model, y0 is
the starting position, σ0 the volatility at the starting position, n is the
sample length and ssed is the random number seed. For every simula-
tion you do, give the seed. The vector y is the resulting GARCH-process
and σ is the volatility process, σt = (α0 + α1X

2
t−1 + β1σ

2
t−1)

1/2.

Your homework should include the following:

(a) One plot of a GARCH-process {Yt} of length n = 500 with pa-
rameters α0, α1 and β1, starting at y0 = 0, σ0 = α0, such that
α1 + β1 < 1. You should also include a plot with the correspon-
ding volatility process σt.

(b) One plot of a GARCH-process {Yt} of length n = 500 with pa-
rameters α0, α1 and β1, starting at y0 = 0, σ0 = α0, such that
α1 + β1 > 1.

Do you see any qualitative difference of these plots?

In (a) the distribution of the GARCH process will eventually converge
to a stationary distribution whereas in (b) it will not converge to a
stationary distribution.

3. Plot the FX logreturns in logret DEM USD.mat. This plot should be
included in your homework.
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4. We shall fit a GARCH(1, 1)-model to this data set. This can be do-
ne using the GARCH parameter estimation functions in MATLAB’s
FINANCIAL TOOLBOX. Unfortunately it is unavailable for the stu-
dents. Therefore we give the estimates:

α0 = 8.440 · 10−7, α1 = 0.06434, β1 = 0.9195

5. By assuming that the estimated parameters are correct and that the
observed FX logreturns {Yt} comes from the estimated GARCH(1, 1)
process we can, if we assume some starting position, compute the volati-
lity process for the observed FX logreturns. Let y0 = 0 and σ0 = 0.005.
Compute the volatility process {σt} for the observed FX logreturns by:

σt = (α0 + α1Y
2

t−1 + β1σ
2

t−1)
1/2, Y0 = 0, σ0 = 0.005.

Plot {σt} and compare with the FX logreturns. Note how the volatility
process increases as the variation of the FX data becomes large. Include
the plot in your homework.

6. An important issue for many financial institutions is to compute the
Value-at-Risk for a cash flow over some period of time. The Value-
at-Risk is defined as follows. If X is a random variable interpreted as
some random amount we have earned (or lost if X < 0) at some time
T , then VaRp(X) is the number xp such that P(X ≤ −xp) = p. For
instance, if p = 0.01 then VaR0.01(X) is the amount x0.01 such that the
probability of loosing more than x0.01 is 0.01. If X has normal distri-
bution with mean 0 and variance 1 then −VaRp(X) is the pth quantile
of the standard normal distribution. Of particular interest to financial
institutions is to compute the Value-at-Risk over a 10 day period. This
is the objective of this exercise.

Assume that we have observed the FX logreturns in the given data
set and that the last date in that series is today, day 500. We want to
compute VaR0.01(W510 −W500) where W510 is the amount held in the
German mark day 510 given that W500 = 1000000 DEM. This means
that we want to compute the amount z0.01 such that the probability of

17



loosing more than z0.01 over the next 10 days is 0.01.

Let X be the 10 day logreturn from today: X = Y501 +Y502 + · · ·+Y510.
The profit between day 500 and day 510 is

W510 −W500 =
W510 −W500

W500

·W500 =
(W510

W500

− 1
)
·W500

= (eX − 1) ·W500 = (eX − 1) · 106.

The value z0.01 can be estimated by simulating a large number, N =
10000, trajectories of the GARCH process y501, y502, . . . , y510 and deter-
mine z0.01 as the amount such that 0.01 · N = 100 of the trajectories
have w510 − w500 = 106 · (exp{y501 + y502 + · · · + y510} − 1) ≤ z0.01. A
useful function to determine z0.01 is prctile in the m-file prctile.m.

In your report on B.2.2 part 6. you should include:

• A histogram over the outcomes of the N = 10000 samples of W510 −
W500. This can be done with the MATLAB function hist.

• An estimate for z0.01 based on your simulations of the N = 10000 paths
of the GARCH process.

• The Matlab code for the simulations and calculation of Value-at-Risk.
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