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1 Some notation

R = (−∞,∞)
Z = {0,±1,±2, . . . }
C = The complex numbers = {x + iy; x ∈ R, y ∈ R}
def
= means “equality by definition”.

2 General probabilistic formulas

(Ω,F , P ) is a probability space, where:

Ω is the sample space, i.e. the set of all possible outcomes of an experiment.

F is a σ-field (or a σ-algebra), i.e.

(a) ∅ ∈ F ;

(b) if A1, A2, · · · ∈ F then
∞⋃
1

Ai ∈ F ;

(c) if A ∈ F then Ac ∈ F .

P is a probability measure, i.e. a function F → [0, 1] satisfying

(a) P (Ω) = 1;

(b) P (A) = 1− P (Ac);

(c) if A1, A2, · · · ∈ F are disjoint, then P

(∞⋃
1

Ai

)
=

∞∑
1

P (Ai).

Definition 2.1 A random variable X defined on (Ω,F , P ) is a function Ω →
R such that {ω ∈ Ω : X(ω) ≤ x} ∈ F for all x ∈ R.

Let X be a random variable.

FX(x) = P{X ≤ x} is the distribution function (fördelningsfunktionen).

fX(·), given by FX(x) =
∫ x

−∞ fX(y) dy, is the density function (täthetsfunktionen).

pX(k) = P{X = k} is the probability function (sannolikhetsfunktionen).

φX(u) = E
(
eiuX

)
is the characteristic function (karakteristiska funktionen).

Definition 2.2 Let X1, X2, . . . be a sequence of random variables. We say

that Xn converges in probability to the real number a, written Xn
P−→ a, if for

every ε > 0,
lim

n→∞
P (|Xn − a| > ε) = 0.
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Definition 2.3 Let X1, X2, . . . be a sequence of random variables with finite
second moment. We say that Xn converges in mean-square to the random
variable X, written Xn

m.s.−−→ X, if

E[(Xn −X)2] → 0 as n →∞.

An important property of mean-square convergence is that Cauchy-sequences
do converge. More precisely this means that if X1, X2, . . . have finite second
moment and if

E[(Xn −Xk)
2] → 0 as n, k →∞,

then there exists a random variable X with finite second moment such that
Xn

m.s.−−→ X.

The space of square integrable random variables is complete under mean-square
convergence.

2.1 Some distributions

The Binomial Distribution X ∼ Bin(n, p) if

pX(k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n and 0 < p < 1.

E(X) = np, Var(X) = np(1− p).

The Poisson Distribution X ∼ Po(λ) if

pX(k) =
λk

k!
e−λ, k = 0, 1, . . . and λ > 0.

E(X) = λ, Var(X) = λ, φX(u) = e−λ(1−eiu).

The Exponential Distribution X ∼ Exp(λ) if

fX(x) =

{
1
λ
e−x/λ if x ≥ 0,

0 if x < 0
λ > 0.

E(X) = λ, Var(X) = λ2.

The Standard Normal Distribution X ∼ N(0, 1) if

fX(x) =
1√
2π

e−x2/2, x ∈ R.

E(X) = 0, Var(X) = 1, φX(u) = e−u2/2 .
The density function is often denoted by ϕ(·) and the distribution function by
Φ(·).
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The Normal Distribution X ∼ N(µ, σ2) if

X − µ

σ
∼ N(0, 1), µ ∈ R, σ > 0.

E(X) = µ, Var(X) = σ2, φX(u) = eiµue−u2σ2/2 .

The (multivariate) Normal Distribution
Y = (Y1, . . . , Ym)′ ∼ N(µ, Σ), if there exists

a vector µ =




µ1
...

µm


 , a matrix B =




b11 . . . b1n
...

bm1 . . . bmn


 with Σ = BB′

and a random vector X = (X1, . . . , Xn)′ with independent and N(0, 1)-distributed
components, such that Y = µ + BX. If

(
Y1

Y2

)
∼ N

((
µ1

µ2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
,

then

Y1 conditional on Y2 = y2 ∼ N

(
µ1 +

ρσ1

σ2

(y2 − µ2), (1− ρ2)σ2
1

)
.

More generally, if

(
Y 1

Y 2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,

then Y 1 conditional on Y 2 = y2

∼ N
(
µ1 + Σ12Σ

−1
22 (y2 − µ2), Σ11 − Σ12Σ

−1
22 Σ21

)
.

Asymptotic normality

Definition 2.4 Let Y1, Y2, . . . be a sequence of random variables.
Yn ∼ AN(µn, σ

2
n) means that

lim
n→∞

P

(
Yn − µn

σn

≤ x

)
= Φ(x).

Definition 2.5 Let Y 1,Y 2, . . . be a sequence of random k-vectors.
Y n ∼ AN(µn, Σn) means that

(a) Σ1, Σ2, . . . have no zero diagonal elements;

(b) λ′Y n ∼ AN(λ′µn,λ′Σnλ) for every λ ∈ Rk such that λ′Σnλ > 0 for all
sufficiently large n.
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2.2 Estimation

Let x1, . . . , xn be observations of random variables X1, . . . , Xn with a (known)
distribution depending on the unknown parameter θ. A point estimate (punkt-

skattning) of θ is then the value θ̂(x1, . . . , xn). In order to analyze the estimate

we consider the estimator (stickprovsvariabeln) θ̂(X1, . . . , Xn). Some nice pro-
perties of an estimate are the following:

• An estimate θ̂ of θ is unbiased (väntevärdesriktig) if E(θ̂(X1, . . . , Xn)) =
θ for all θ.

• An estimate θ̂ of θ is consistent if P (|θ̂(X1, . . . , Xn) − θ| > ε) → 0 for
n →∞.

• If θ̂ and θ∗ are unbiased estimates of θ we say that θ̂ is more effective
than θ∗ if Var(θ̂(X1, . . . , Xn)) ≤ Var(θ∗(X1, . . . , Xn)) for all θ.

3 Stochastic processes

Definition 3.1 (Stochastic process) A stochastic process is a family of
random variables {Xt, t ∈ T} defined on a probability space (Ω,F , P ).

A stochastic process with T ⊂ Z is often called a time series.

Definition 3.2 (The distribution of a stochastic process) Put

T = {t ∈ T n : t1 < t2 < · · · < tn, n = 1, 2, . . . }.

The (finite-dimensional) distribution functions are the family {Ft(·), t ∈ T }
defined by

Ft(x) = P (Xt1 ≤ x1, . . . , Xtn ≤ xn), t ∈ T n, x ∈ Rn.

With “the distribution of {Xt, t ∈ T ⊂ R}̊ae mean the family {Ft(·), t ∈ T }.

Definition 3.3 Let {Xt, t ∈ T} be a stochastic process with Var(Xt) < ∞.
The mean function of {Xt} is

µX(t)
def
= E(Xt), t ∈ T.

The covariance function of {Xt} is

γX(r, s) = Cov(Xr, Xs), r, s ∈ T.

Definition 3.4 (Standard Brownian motion) A standard Brownian mo-
tion, or a standard Wiener process {B(t), t ≥ 0} is a stochastic process sa-
tisfying

(a) B(0) = 0;
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(b) for every t = (t0, t1, . . . , tn) with 0 = t0 < t1 < · · · < tn the random
variables ∆1 = B(t1)−B(t0), . . . , ∆n = B(tn)−B(tn−1) are independent;

(c) B(t)−B(s) ∼ N(0, t− s) for t ≥ s.

Definition 3.5 (Poisson process) A Poisson process {N(t), t ≥ 0} with
mean rate (or intensity) λ is a stochastic process satisfying

(a) N(0) = 0;

(b) for every t = (t0, t1, . . . , tn) with 0 = t0 < t1 < · · · < tn the random
variables ∆1 = N(t1)−N(t0), . . . , ∆n = N(tn)−N(tn−1) are independent;

(c) N(t)−N(s) ∼ Po(λ(t− s)) for t ≥ s.

Definition 3.6 (Gaussian time series) The time series {Xt, t ∈ Z} is said
to be a Gaussian time series if all finite-dimensional distributions are normal.

4 Stationarity

Definition 4.1 The time series {Xt, t ∈ Z} is said to be strictly stationary
if the distributions of

(Xt1 , . . . , Xtk) and (Xt1+h, . . . , Xtk+h)

are the same for all k, and all t1, . . . , tk, h ∈ Z.

Definition 4.2 The time series {Xt, t ∈ Z} is said to be (weakly) stationary
if, see Definition 3.3 on the preceding page for notation,

(i) Var(Xt) < ∞ for all t ∈ Z,

(ii) µX(t) = µ for all t ∈ Z,

(iii) γX(r, s) = γX(r + t, s + t) for all r, s, t ∈ Z.

(iii) implies that γX(r, s) is a function of r − s, and it is convenient to define

γX(h)
def
= γX(h, 0).

The value “h”is referred to as the “lag”.

Definition 4.3 Let {Xt, t ∈ Z} be a stationary time series. The autocovari-
ance function (ACVF) of {Xt} is

γX(h) = Cov(Xt+h, Xt).

The autocorrelation function (ACF) is

ρX(h)
def
=

γX(h)

γX(0)
.
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5 Spectral theory

Definition 5.1 The complex-valued time series {Xt, t ∈ Z} is said to be sta-
tionary if

(i) E|Xt|2 < ∞ for all t ∈ Z,

(ii) EXt is independent of t for all t ∈ Z,

(iii) E[Xt+hXt] is independent of t for all t ∈ Z.

Definition 5.2 The autocovariance function γ(·) of a complex-valued statio-
nary time series {Xt} is

γ(h) = E[Xt+hXt]− EXt+hEXt.

Suppose that
∑∞

h=−∞ |γ(h)| < ∞. The function

f(λ) =
1

2π

∞∑

h=−∞
e−ihλγ(h), −π ≤ λ ≤ π, (1)

is called the spectral density of the time series {Xt, t ∈ Z}. We have the spectral
representation of the ACVF

γ(h) =

∫ π

−π

eihλf(λ) dλ.

For a real-valued time series f is symmetric, i.e. f(λ) = f(−λ).
For any stationary time series the ACVF has the representation

γ(h) =

∫

(−π,π]

eihν dF (ν) for all h ∈ Z,

where the spectral distribution function F (·) is a right-continuous, non-decreasing,
bounded function on [−π, π] and F (−π) = 0.
The time series itself has a spectral representation

Xt =

∫

(−π,π]

eitν dZ(ν)

where {Z(λ), λ ∈ [−π, π]} is an orthogonal-increment process.

Definition 5.3 (Orthogonal-increment process) An orthogonal-increment
process on [−π, π] is a complex-valued process {Z(λ)} such that

〈Z(λ), Z(λ)〉 < ∞, −π ≤ λ ≤ π,

〈Z(λ), 1〉 = 0, −π ≤ λ ≤ π,
and

〈Z(λ4)− Z(λ3), Z(λ2)− Z(λ1)〉 = 0, if (λ1, λ2] ∩ (λ3, λ4] = ∅
where 〈X, Y 〉 = EXY .
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6 Time series models

Definition 6.1 (White noise) A process {Xt, t ∈ Z} is said to be a white
noise with mean µ and variance σ2, written

{Xt} ∼ WN(µ, σ2),

if EXt = µ and γ(h) =

{
σ2 if h = 0,

0 if h 6= 0.

A WN(µ, σ2) has spectral density

f(λ) =
σ2

2π
, −π ≤ λ ≤ π.

Definition 6.2 (Linear processes) The process {Xt, t ∈ Z} is said to be a
linear process if it has the representation

Xt =
∞∑

j=−∞
ψjZt−j, {Zt} ∼ WN(0, σ2),

where
∑∞

j=−∞ |ψj| < ∞.

A linear process is stationary with mean 0, autocovariance function

γ(h) =
∞∑

j=−∞
ψjψj+hσ

2,

and spectral density

f(λ) =
σ2

2π
|ψ(e−iλ)|2, −π ≤ λ ≤ π,

where ψ(z) =
∑∞

j=−∞ ψjz
j.

Definition 6.3 (IID noise) A process {Xt, t ∈ Z} is said to be an IID noise
with mean 0 and variance σ2, written

{Xt} ∼ IID(0, σ2),

if the random variables Xt are independent and identically distributed with
EXt = 0 and Var(Xt) = σ2.
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6.1 ARMA processes

Definition 6.4 (The ARMA(p, q) process) The process {Xt, t ∈ Z} is
said to be an ARMA(p, q) process if it is stationary and if

Xt − φ1Xt−1 − . . .− φpXt−p = Zt + θ1Zt−1 + . . . + θqZt−q, (2)

where {Zt} ∼ WN(0, σ2). We say that {Xt} is an ARMA(p, q) process with
mean µ if {Xt − µ} is an ARMA(p, q) process.

Equations (2) can be written as

φ(B)Xt = θ(B)Zt, t ∈ Z,

where
φ(z) = 1− φ1z − . . .− φpz

p,

θ(z) = 1 + θ1z + . . . + θqz
q,

and B is the backward shift operator, i.e. (BjX)t = Xt−j. The polynomials
φ(·) and θ(·) are called generating polynomials.

Definition 6.5 An ARMA(p, q) process defined by the equations

φ(B)Xt = θ(B)Zt {Zt} ∼ WN(0, σ2),

is said to be causal if there exists constants {ψj} such that
∑∞

j=0 |ψj| < ∞ and

Xt =
∞∑

j=0

ψjZt−j, t ∈ Z. (3)

Theorem 6.1 Let {Xt} be an ARMA(p, q) for which φ(·) and θ(·) have no
common zeros. Then {Xt} is causal if and only if φ(z) 6= 0 for all |z| ≤ 1. The
coefficients {ψj} in (3) are determined by the relation

ψ(z) =
∞∑

j=0

ψjz
j =

θ(z)

φ(z)
, |z| ≤ 1.

Definition 6.6 An ARMA(p, q) process defined by the equations

φ(B)Xt = θ(B)Zt, {Zt} ∼ WN(0, σ2),

is said to be invertible if there exists constants {πj} such that
∑∞

j=0 |πj| < ∞
and

Zt =
∞∑

j=0

πjXt−j, t ∈ Z. (4)
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Theorem 6.2 Let {Xt} be an ARMA(p, q) for which φ(·) and θ(·) have no
common zeros. Then {Xt} is invertible if and only if θ(z) 6= 0 for all |z| ≤ 1.
The coefficients {πj} in (4) are determined by the relation

π(z) =
∞∑

j=0

πjz
j =

φ(z)

θ(z)
, |z| ≤ 1.

A causal and invertible ARMA(p, q) process has spectral density

f(λ) =
σ2

2π

|θ(e−iλ)|2
|φ(e−iλ)|2 , −π ≤ λ ≤ π.

Definition 6.7 (The AR(p) process) The process {Xt, t ∈ Z} is said to
be an AR(p) autoregressive process of order p if it is stationary and if

Xt − φ1Xt−1 − . . .− φpXt−p = Zt, {Zt} ∼ WN(0, σ2).

We say that {Xt} is an AR(p) process with mean µ if {Xt − µ} is an AR(p)
process.

A causal AR(p) process has spectral density

f(λ) =
σ2

2π

1

|φ(e−iλ)|2 − π ≤ λ ≤ π.

Its ACVF is determined be the the Yule-Walker equations :

γ(k)− φ1γ(k − 1)− . . .− φpγ(k − p) =

{
0, k = 1, . . . , p,

σ2, k = 0.
(5)

A causal AR(1) process defined by

Xt − φXt−1 = Zt, {Zt} ∼ WN(0, σ2),

has ACVF

γ(h) =
σ2φ|h|

1− φ2

and spectral density

f(λ) =
σ2

2π

1

1 + φ2 − 2φ cos(λ)
, −π ≤ λ ≤ π.

Definition 6.8 (The MA(q) process) The process {Xt, t ∈ Z} is said to
be a moving average of order q if

Xt = Zt + θ1Zt−1 + . . . + θqZt−q, {Zt} ∼ WN(0, σ2),

where θ1, . . . , θq are constants.
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An invertible MA(1) process defined by

Xt = Zt + θZt−1, {Zt} ∼ WN(0, σ2),

has ACVF

γ(h) =





(1 + θ2)σ2 if h = 0,

θσ2 if |h| = 1,

0 if |h| > 1.

and spectral density

f(λ) =
σ2

2π
(1 + θ2 + 2θ cos(λ)), −π ≤ λ ≤ π.

6.2 ARIMA and FARIMA processes

Definition 6.9 (The ARIMA(p, d, q) process) Let d be a non-negative in-
teger. The process {Xt, t ∈ Z} is said to be an ARIMA(p, d, q) process if
(1−B)dXt is a causal ARMA(p, q) process.

Definition 6.10 (The FARIMA(p, d, q) process) Let 0 < |d| < 0.5. The
process {Xt, t ∈ Z} is said to be a fractionally integrated ARMA process or a
FARIMA(p, d, q) process if {Xt} is stationary and satisfies

φ(B)(1−B)dXt = θ(B)Zt, {Zt} ∼ WN(0, σ2).

6.3 Financial time series

Definition 6.11 (The ARCH(p) process) The process {Xt, t ∈ Z} is said
to be an ARCH(p) process if it is stationary and if

Xt = σtZt, {Zt} ∼ IID N(0, 1),

where
σ2

t = α0 + α1X
2
t−1 + . . . + αpX

2
t−p

and α0 > 0, αj ≥ 0 for j = 1, . . . , p, and if Zt and Xt−1, Xt−2, . . . are indepen-
dent for all t.

Definition 6.12 (The GARCH(p, q) process) The process {Xt, t ∈ Z} is
said to be an GARCH(p, q) process if it is stationary and if

Xt = σtZt, {Zt} ∼ IID N(0, 1),

where
σ2

t = α0 + α1X
2
t−1 + . . . + αpX

2
t−p + β1σ

2
t−1 + . . . + βqσ

2
t−q

and α0 > 0, αj ≥ 0 for j = 1, . . . , p, βk ≥ 0 for k = 1, . . . , q, and if Zt and
Xt−1, Xt−2, . . . are independent for all t.
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7 Prediction

Let X1, X2, . . . , Xn and Y be any random variables with finite means and
variances. Put µi = E(Xi), µ = E(Y ),

Γn =




γ1,1 . . . γ1,n
...

γn,1 . . . γn,n


 =




Cov(X1, X1) . . . Cov(X1, Xn)
...

Cov(Xn, X1) . . . Cov(Xn, Xn)




and

γn =




γ1
...

γn


 =




Cov(X1, Y )
...

Cov(Xn, Y )


 .

Definition 7.1 The best linear predictor Ŷ of Y in terms of X1, X2, . . . , Xn

is a random variable of the form

Ŷ = a0 + a1X1 + . . . + anXn

such that E
[
(Y − Ŷ )2

]
is minimized with respect to a0, . . . , an. E

[
(Y − Ŷ )2

]
is

called the mean-squared error.

It is often convenient to use the notation

Psp{1, X1,...,Xn}Y
def
= Ŷ .

The predictor is given by

Ŷ = µ + a1(X1 − µ1) + . . . + an(Xn − µn)

where

an =




a1
...

an




satisfies γn = Γnan. If Γn is non-singular we have an = Γ−1
n γn.

• There is no restriction to assume all means to be 0.

• The predictor Ŷ of Y is determined by

Cov(Ŷ − Y, Xi) = 0, for i = 1, . . . , n.

7.1 Prediction for stationary time series

Theorem 7.1 If {Xt} is a zero-mean stationary time series such that γ(0) > 0

and γ(h) → 0 as h → ∞, the best linear predictor X̂n+1 of Xn+1 in terms of
X1, X2, . . . , Xn is

X̂n+1 =
n∑

i=1

φn,iXn+1−i, n = 1, 2, . . . ,
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where

φn =




φn,1
...

φn,n


 = Γ−1

n γn, γn =




γ(1)
...

γ(n)


 and

Γn =




γ(1− 1) . . . γ(1− n)
...

γ(n− 1) . . . γ(n− n)


 .

The mean-squared error is vn = γ(0)− γ ′nΓ−1
n γn.

Theorem 7.2 (The Durbin–Levinson Algorithm) If {Xt} is a zero-mean
stationary time series such that γ(0) > 0 and γ(h) → 0 as h → ∞, then
φ1,1 = γ(1)/γ(0), v0 = γ(0),

φn,n =

[
γ(n)−

n−1∑
j=1

φn−1,jγ(n− j)

]
v−1

n−1




φn,1
...

φn,n−1


 =




φn−1,1
...

φn−1,n−1


− φn,n




φn−1,n−1
...

φn−1,1




and
vn = vn−1[1− φ2

n,n].

Theorem 7.3 (The Innovations Algorithm) If {Xt} has zero-mean and

E(XiXj) = κ(i, j), where the matrix

(
κ(1,1) ... κ(1,n)

...
κ(n,1) ... κ(n,n)

)
is non-singular, we have

X̂n+1 =





0 if n = 0,
n∑

j=1

θn,j(Xn+1−j − X̂n+1−j) if n ≥ 1,
(6)

and

v0 = κ(1, 1),

θn,n−k = v−1
k

(
κ(n + 1, k + 1)−

k−1∑
j=0

θk,k−jθn,n−jvj

)
, k = 0, . . . , n− 1,

vn = κ(n + 1, n + 1)−
n−1∑
j=0

θ2
n,n−jvj.
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7.2 Prediction of an ARMA Process

Let {Xt} be a causal ARMA(p, q) process defined by φ(B)Xt = θ(B)Zt. Then

X̂n+1 =





n∑
j=1

θn,j(Xn+1−j − X̂n+1−j) if 1 ≤ n < m,

φ1Xn + · · ·+ φpXn+1−p

+
q∑

j=1

θn,j(Xn+1−j − X̂n+1−j) if n ≥ m,

where m = max(p, q). The θnj:s are obtained by the innovations algorithm
applied to {

Wt = σ−1Xt, if t = 1, . . . , m,

Wt = σ−1φ(B)Xt, if t > m.

8 Partial correlation

Definition 8.1 Let Y1, Y2 and W1, . . . , Wk be random variables. The partial
correlation coefficient of Y1 and Y2 with respect to W1, . . . , Wk is defined by

α(Y1, Y2)
def
= ρ(Y1 − Ŷ1, Y2 − Ŷ2),

where Ŷ1 = Psp{1,W1,...,Wk}Y1 and Ŷ2 = Psp{1,W1,...,Wk}Y2.

8.1 Partial autocorrelation

Definition 8.2 Let {Xt, t ∈ Z} be a zero-mean stationary time series. The
partial autocorrelation function (PACF) of {Xt} is defined by

α(0) = 1,

α(1) = ρ(1),

α(h) = ρ(Xh+1 − Psp{X2,...,Xh}Xh+1, X1 − Psp{X2,...,Xh}X1), h ≥ 2.

Theorem 8.1 Under the assumptions of Theorem 7.2 α(h) = φh,h for h ≥ 1.

9 Linear filters

A filter is an operation on a time series {Xt} in order to obtain a new time series
{Yt}. {Xt} is called the input and {Yt} the output. The following operation

Yt =
∞∑

k=−∞
ct,kXk

defines a linear filter. A filter is called time-invariant if ct,k depends only on
t− k, i.e. if

ct,k = ht−k.
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A time-invariant linear filter (TLF) is said to by causal if

hj = 0 for j < 0,

A TLF is called stable if
∑∞

−∞ |hk| < ∞.

Put h(z) =
∑∞

−∞ hkz
k. Then Y = h(B)X. The function h(e−iλ) is called the

transfer function (överföringsfunktion eller frekvenssvarsfunktion). The func-
tion |h(e−iλ)|2 is called the power transfer function.

Theorem 9.1 Let {Xt} be a possibly complex-valued stationary input in a
stable TLF h(B) and let {Yt} be the output, i.e. Y = h(B)X. Then

(a) EYt = h(1)EXt;

(b) Yt is stationary;

(c) FY (λ) =
∫
(−π,λ]

|h(e−iν)|2 dFX(ν), for λ ∈ [−π, π].

10 Estimation in time series

Definition 10.1 (Strictly linear time series) A stationary time series {Xt}
is called strictly linear if it has the representation

Xt = µ +
∞∑

j=−∞
ψjZt−j, {Zt} ∼ IID(0, σ2).

10.1 Estimation of µ

Consider Xn = 1
n

∑n
j=1 Xj , which is a natural unbiased estimate of µ.

Theorem 10.1 If {Xt} is a stationary time series with mean µ and autoco-
variance function γ(·), then as n →∞,

Var(Xn) = E[(Xn − µ)2] → 0 if γ(n) → 0,

and

n Var(Xn) →
∞∑

h=−∞
γ(h) = 2πf(0) if

∞∑

h=−∞
|γ(h)| < ∞.

Theorem 10.2 If {Xt} is a strictly linear time series where
∑∞

j=−∞ |ψj| < ∞
and

∑∞
j=−∞ ψj 6= 0, then

Xn ∼ AN
(
µ,

v

n

)
,

where v =
∑∞

h=−∞ γ(h) = σ2
(∑∞

j=−∞ ψj

)2

.

The notion AN is found in Definitions 2.4 and 2.5 on page 4.
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10.2 Estimation of γ(·) and ρ(·)
Consider

γ̂(h) =
1

n

n−h∑
t=1

(Xt −Xn)(Xt+h −Xn), 0 ≤ h ≤ n− 1,

and

ρ̂(h) =
γ̂(h)

γ̂(0)
,

respectively.

Theorem 10.3 If {Xt} is a strictly linear time series where
∑∞

j=−∞ |ψj| < ∞
and EZ4

t = ησ4 < ∞, then



γ̂(0)
...

γ̂(h)


 ∼ AN







γ(0)
...

γ(h)


 , n−1V


 ,

where V = (vij)i,j=0,...,h is the covariance matrix and

vij = (η − 3)γ(i)γ(j) +
∞∑

k=−∞
{γ(k)γ(k − i + j) + γ(k + j)γ(k − i)}.

Note: If {Zt, t ∈ Z} is Gaussian, then η = 3. 2

Theorem 10.4 If {Xt} is a strictly linear time series where
∑∞

j=−∞ |ψj| < ∞
and EZ4

t < ∞, then



ρ̂(1)
...

ρ̂(h)


 ∼ AN







ρ(1)
...

ρ(h)


 , n−1W


 ,

where W = (wij)i,j=1,...,h is the covariance matrix and

wij =
∞∑

k=−∞
{ρ(k + i)ρ(k + j) + ρ(k − i)ρ(k + j)

+ 2ρ(i)ρ(j)ρ2(k)− 2ρ(i)ρ(k)ρ(k + j)− 2ρ(j)ρ(k)ρ(k + i)}. (7)

In the following theorem, the assumption EZ4
t < ∞ is relaxed at the expense

of a slightly stronger assumption on the sequence {ψj}.
Theorem 10.5 If {Xt} is a strictly linear time series where

∑∞
j=−∞ |ψj| < ∞

and
∑∞

j=−∞ ψ2
j |j| < ∞, then




ρ̂(1)
...

ρ̂(h)


 ∼ AN







ρ(1)
...

ρ(h)


 , n−1W


 ,

where W is given by the previous theorem.
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10.3 Estimation of the spectral density

The Fourier frequencies are given by ωj = 2πj
n

, −π < ωj ≤ π. Put

Fn
def
= {j ∈ Z, −π < ωj ≤ π} =

{
−

[
n− 1

2

]
, . . . ,

[n

2

]}
,

where [x] denotes the integer part of x.

10.3.1 The periodogram

Definition 10.2 The periodogram In(·) of {X1, . . . , Xn} is defined by

In(ωj) =
1

n

∣∣∣∣
n∑

t=1

Xte
−itωj

∣∣∣∣
2

, j ∈ Fn.

Definition 10.3 (Extension of the periodogram) For any ω ∈ [−π, π]
we define

In(ω) =

{
In(ωk) if ωk − π/n < ω ≤ ωk + π/n and 0 ≤ ω ≤ π,

In(−ω) if ω ∈ [−π, 0).

Theorem 10.6 We have

EIn(0)− nµ2 → 2πf(0) as n →∞

and
EIn(ω) → 2πf(ω) as n →∞ if ω 6= 0.

(If µ = 0 then In(ω) converges uniformly to 2πf(ω) on [−π, π).)

Theorem 10.7 Let {Xt} be a strictly linear time series with

µ = 0,
∞∑

j=−∞
|ψj||j|1/2 < ∞ and EZ4 < ∞.

Then

Cov(In(ωj), In(ωk)) =





2(2π)2f 2(ωj) + O(n−1/2) if ωj = ωk = 0 or π,

(2π)2f 2(ωj) + O(n−1/2) if 0 < ωj = ωk < π,

O(n−1) if ωj 6= ωk.

10.3.2 Smoothing the periodogram

Definition 10.4 The estimator f̂(ω) = f̂(g(n, ω)) with

f̂(ωj) =
1

2π

∑

|k|≤mn

Wn(k)In(ωj+k),
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where
mn →∞ and mn/n → 0 as n →∞,

Wn(k) = Wn(−k), Wn(k) ≥ 0, for all k,
∑

|k|≤mn

Wn(k) = 1,

and ∑

|k|≤mn

W 2
n(k) → 0 as n →∞,

is called a discrete spectral average estimator of f(ω).
(If ωj+k 6∈ [−π, π] the term In(ωj+k) is evaluated by defining In to have period
2π.)

Theorem 10.8 Let {Xt} be a strictly linear time series with

µ = 0,
∞∑

j=−∞
|ψj||j|1/2 < ∞ and EZ4 < ∞.

Then
lim

n→∞
Ef̂(ω) = f(ω)

and

lim
n→∞

1∑
|k|≤mn

W 2
n(k)

Cov(f̂(ω), f̂(λ)) =





2f 2(ω) if ω = λ = 0 or π,

f 2(ω) if 0 < ω = λ < π,

0 if ω 6= λ.

Remark 10.1 If µ 6= 0 we ignore In(0). Thus we can use

f̂(0) =
1

2π

(
Wn(0)In(ω1) + 2

mn∑

k=1

Wn(k)In(ωk+1)

)
.

Moreover, whenever In(0) appears in f̂(ωj) we replace it with f̂(0). 2

Example 10.1 (The simple moving average estimate) For this estima-
te we have

Wn(k) =

{
1/(2mn + 1) if |k| ≤ mn,

0 if |k| > mn,

and

Var(f̂(ω)) ∼
{

1
mn

f 2(ω) if ω = 0 or π,
1

mn

f2(ω)
2

if 0 < ω < π.

2
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11 Estimation for ARMA models

11.1 Yule-Walker estimation

Consider a causal zero-mean AR(p) process {Xt}:

Xt − φ1Xt−1 − . . .− φpXt−p = Zt, {Zt} ∼ IID(0, σ2).

The Yule-Walker equations (5) on page 10 can be written on the form

Γpφ = γp and σ2 = γ(0)− φ′γp,

where

Γp =




γ(0) . . . γ(p− 1)
...

γ(p− 1) . . . γ(0)


 and γp =




γ(1)
...

γ(p)


 .

If we replace Γp and γp with the estimates Γ̂p and γ̂p we obtain the following
equations for the Yule-Walker estimates

Γ̂p φ̂ = γ̂p and σ̂2 = γ̂(0)− φ̂ ′γ̂p,

where

Γ̂p =




γ̂(0) . . . γ̂(p− 1)
...

γ̂(p− 1) . . . γ̂(0)


 and γ̂p =




γ̂(1)
...

γ̂(p)


 .

Theorem 11.1 If {Xt} is a causal AR(p) process with {Zt} ∼ IID(0, σ2), and

φ̂ is the Yule-Walker estimate of φ, then

φ̂ ∼ AN

(
φ,

σ2Γ−1
p

n

)
, for large values of n.

Moreover,

σ̂2 P−→ σ2.

A usual way to proceed is as if {Xt} were an AR(m) process for m = 1, 2, . . .
until we believe that m ≥ p. In that case we can use the Durbin-Levinson
algorithm, see Theorem 7.2 on page 13, with γ(·) replaced by γ̂(·).

11.2 Burg’s algorithm

Assume as usual that x1, . . . , xn are the observations. The idea is to consider
one observation after the other and to “predict”it both by forward and back-
ward data. The forward and backward prediction errors {ui(t)} and {vi(t)}
satisfy the recursions

u0(t) = v0(t) = xn+1−t,

ui(t) = ui−1(t− 1)− φiivi−1(t),



11 ESTIMATION FOR ARMA MODELS 20

and
vi(t) = vi−1(t)− φiiui−1(t− 1).

Suppose now that we know φi−1,k for k = 1, . . . , i − 1 and φii. Then φi,k for
k = 1, . . . , i− 1 may be obtained by the Durbin-Levinson algorithm. Thus the
main problem is to obtain an algorithm for calculating φii for i = 1, 2, . . .

Burg’s algorithm:

d(1) = 1
2
x2

1 + x2
2 + . . . + x2

n−1 + 1
2
x2

n (8)

φ
(B)
ii =

1

d(i)

n∑
t=i+1

vi−1(t)ui−1(t− 1) (9)

σ
(B)2
i =

d(i)
(
1− φ

(B)2
ii

)

n− i
(10)

d(i + 1) = d(i)
(
1− φ

(B)2
ii

)−1
2
v2

i (i + 1)− 1
2
u2

i (n). (11)

The Burg estimates for an AR(p) have the same statistical properties for large
values of n as the Yule-Walker estimate, i.e. Theorem 11.1 on the preceding
page holds.

11.3 The innovations algorithm

Since an MA(q) process

Xt = Zt + θ1Zt−1 + . . . + θqZt−q, {Zt} ∼ IID(0, σ2),

has, by definition, an innovation representation, it is natural to use the in-
novations algorithm for prediction in a similar way as the Durbin-Levinson
algorithm was used. Since, generally, q is unknown, we can try to fit MA mo-
dels

Xt = Zt + θ̂m1Zt−1 + . . . + θ̂mmZt−m, {Zt} ∼ IID(0, v̂m),

of orders m = 1, 2, . . . , by means of the innovations algorithm.

Definition 11.1 (Innovations estimates of MA parameters)
If γ̂(0) > 0 we define the innovations estimates

θ̂m =




θ̂m1
...

θ̂mm


 and v̂m, m = 1, 2, . . . , n− 1,
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by the recursion relations





v̂0 = γ̂(0),

θ̂m,m−k = v̂−1
k

(
γ̂(m− k)−

k−1∑
j=0

θ̂m,m−j θ̂k,k−j v̂j

)
, k = 0, . . . , m− 1,

v̂m = γ̂(0)−
m−1∑
j=0

θ̂
2

m,m−j v̂j.

This method works also for causal invertible ARMA processes. The following
theorem gives asymptotic statistical properties of the innovations estimates.

Theorem 11.2 Let {Xt} be the causal invertible ARMA process φ(B)Xt =

θ(B)Zt, {Zt} ∼ IID(0, σ2), EZ4
t < ∞, and let ψ(z) =

∑∞
j=0 ψjz

j = θ(z)
φ(z)

, |z| ≤ 1

(with ψ0 = 1 and ψj = 0 for j < 0). Then for any sequence of positive integers
{m(n), n = 1, 2, . . . } such that m →∞ and m = o(n1/3) as n →∞, we have
for each fixed k, 


θ̂m1
...

θ̂mk


 ∼ AN







ψ1
...

ψk


 , n−1A


 ,

where A = (aij)i,j=1,...,k and

aij =

min(i,j)∑
r=1

ψi−rψj−r.

Moreover,

v̂m
P−→ σ2.

11.4 The Hannan–Rissanen algorithm

Let {Xt} be an ARMA(p, q) process:

Xt − φ1Xt−1 − . . .− φpXt−p = Zt + θ1Zt−1 + . . . + θqZt−q, {Zt} ∼ IID(0, σ2).

The Hannan–Rissanen algorithm consists of the following two steps:

Step 1

A high order AR(m) model (with m > max(p, q)) is fitted to the data by Yule-

Walker estimation. If φ̂m1, . . . , φ̂mm are the estimated coefficients, then Zt is
estimated by

Ẑt = Xt − φ̂m1Xt−1 − . . .− φ̂mmXt−m, t = m + 1, . . . , n.

Step 2

The vector β = (φ, θ) is estimated by least square regression of Xt onto

Xt−1, . . . , Xt−p, Ẑt−1, . . . , Ẑt−q,
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i.e. by minimizing

S(β) =
n∑

t=m+1

(Xt − φ1Xt−1 − . . .− φpXt−p − θ1Ẑt−1 − . . .− θqẐt−q)
2

with respect to β. This gives the Hannan–Rissanen estimator

β̂ = (Z ′Z)−1Z ′Xn provided Z ′Z is non-singular,

where

Xn =




Xm+1
...

Xn




and

Z =




Xm Xm−1 . . . Xm−p+1 Ẑm Ẑm−1 . . . Ẑm−q+1
...

...

Xn−1 Xn−2 . . . Xn−p Ẑn−1 Ẑn−2 . . . Ẑn−q


 .

The Hannan–Rissanen estimate of the white noise variance σ2 is

σ̂2
HR =

S( β̂)

n−m
.

11.5 Maximum Likelihood and Least Square estimation

It is possible to obtain better estimates by the maximum likelihood method
(under the assumption of Gaussian processes) or by the least square method.
In the least square method we minimize

S(φ,θ) =
n∑

j=1

(Xj − X̂j)
2

rj−1

,

where rj−1 = vj−1/σ
2, with respect to φ and θ. The estimates has to be

obtained by recursive methods, and the estimates discussed are natural starting
values. The least square estimate of σ2 is

σ̂2
LS =

S(φ̂LS, θ̂LS)

n− p− q
,

where (φ̂LS, θ̂LS) is the estimate obtained by minimizing S(φ,θ).
Let us assume, or at least act as if, the process is Gaussian. Then, for any fixed
values of φ, θ, and σ2, the innovations X1− X̂1, . . . , Xn− X̂n are independent
and normally distributed with zero means and variances v0 = σ2r0, . . . , vn−1 =
σ2rn−1. The likelihood function is then

L(φ, θ, σ2) =
n∏

j=1

fXj− bXj
(Xj − X̂j) =

n∏
j=1

1√
2πσ2rj−1

exp

{
−(Xj − X̂j)

2

2σ2rj−1

}
.
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Proceeding “in the usual waẙae get

ln L(φ,θ, σ2) = −1

2
ln((2πσ2)nr0 · · · rn−1)− S(φ,θ)

2σ2
.

Obviously r0, . . . , rn−1 depend on φ and θ but they do not depend on σ2. To
maximize ln L(φ,θ, σ2) is the same as to minimize

`(φ, θ) = ln(n−1S(φ,θ)) + n−1

n∑
j=1

ln rj−1,

which has to be done numerically.
In the causal and invertible case rn → 1 and therefore n−1

∑n
j=1 ln rj−1 is

asymptotically negligible compared with ln S(φ,θ). Thus both methods – least
square and maximum likelihood – give asymptotically the same result in that
case.

11.6 Order selection

Assume now that we want to fit an ARMA(p, q) process to real data, i.e. we
want to estimate p, q, (φ, θ), and σ2. We restrict ourselves to maximum li-
kelihood estimation. Then we maximize L(φ,θ, σ2), or – which is the same
– minimize −2 ln L(φ,θ, σ2), where L is regarded as a function also of p and
q. Most probably we will get very high values of p and q. Such a model will
probably fit the given data very well, but it is more or less useless as a mathe-
matical model, since it will probably not be lead to reasonable predictors nor
describe a different data set well. It is therefore natural to introduce a “penalty
factorto discourage the fitting of models with too many parameters. Instead
of maximum likelihood estimation we may apply the AICC Criterion:

Choose p, q, and (φp, θq), to minimize

AICC = −2 ln L(φp,θq, S(φp,θq)/n) + 2(p + q + 1)n/(n− p− q − 2).

(The letters AIC stand for “Akaike’s Information Criterionänd the last C for
“biased-Corrected”.)
The AICC Criterion has certain nice properties, but also its drawbacks. In
general one may say the order selection is genuinely difficult.

12 Multivariate time series

Let

X t
def
=




Xt1
...

Xtm


 , t ∈ Z,

where each component is a time series. In that case we talk about multivariate
time series.
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The second-order properties of {X t} are specified by the mean vector

µt
def
= EX t =




µt1
...

µtm


 =




EXt1
...

EXtm


 , t ∈ Z,

and the covariance matrices

Γ(t+h, t)
def
= E[(X t+h−µt+h)(X t−µt)

′] =




γ11(t + h, t) . . . γ1m(t + h, t)
...

γm1(t + h, t) . . . γmm(t + h, t)




where γij(t + h, t)
def
= Cov(Xt+h,i, Xt,j).

Definition 12.1 The m-variate time series {X t, t ∈ Z} is said to be (weakly)
stationary if

(i) µt = µ for all t ∈ Z,

(ii) Γ(r, s) = Γ(r + t, s + t) for all r, s, t ∈ Z.

Item (ii) implies that Γ(r, s) is a function of r−s, and it is convenient to define

Γ(h)
def
= Γ(h, 0).

Definition 12.2 (Multivariate white noise) An m-variate process

{Zt, t ∈ Z}
is said to be a white noise with mean µ and covariance matrix Σ| , written

{Zt} ∼ WN(µ, Σ| ),

if EZt = µ and Γ(h) =

{
Σ| if h = 0,

0 if h 6= 0.

Definition 12.3 (The ARMA(p, q) process) The process {X t, t ∈ Z} is
said to be an ARMA(p, q) process if it is stationary and if

X t − Φ1X t−1 − . . .− ΦpX t−p = Zt + Θ1Zt−1 + . . . + ΘqZt−q, (12)

where {Zt} ∼ WN(0, Σ| ). We say that {X t} is an ARMA(p, q) process with
mean µ if {X t − µ} is an ARMA(p, q) process.

Equations (12) can be written as

Φ(B)X t = Θ(B)Zt, t ∈ Z,

where
Φ(z) = I − Φ1z − . . .− Φpz

p,
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Θ(z) = I + Θ1z + . . . + Θqz
q,

are matrix-valued polynomials.
Causality and invertibility are characterized in terms of the generating poly-
nomials:

Causality: X t is causal if det Φ(z) 6= 0 for all |z| ≤ 1;

Invertibility: X t is invertible if det Θ(z) 6= 0 for all |z| ≤ 1.

Assume that ∞∑

h=−∞
|γij(h)| < ∞, i, j = 1, . . . , m. (13)

Definition 12.4 (The cross spectrum) Let {X t, t ∈ Z} be an m-variate
stationary time series whose ACVF satisfies (13). The function

fjk(λ) =
1

2π

∞∑

h=−∞
e−ihλγjk(h), −π ≤ λ ≤ π, j 6= k,

is called the cross spectrum or cross spectral density of {Xtj} and {Xtk}. The
matrix

f(λ) =




f11(λ) . . . f1m(λ)
...

fm1(λ) . . . fmm(λ)




is called the spectrum or spectral density matrix of {X t}.
The spectral density matrix f(λ) is non-negative definite for all λ ∈ [−π, π].

13 Kalman filtering

We will use the notation

{Zt} ∼ WN(0, {Σ| t}),

to indicate that the process {Zt} has mean 0 and that

EZsZ
′
t =

{
Σ| t if s = t,

0 otherwise.

Notice this definition is an extension of Definition 12.2 on the page before in
order to allow for non-stationarity.
A state-space model is defined by

the state equation

X t+1 = FtX t + V t, t = 1, 2, . . . , (14)
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where
{X t} is a v-variate process describing the state of some system,
{V t} ∼ WN(0, {Qt}), and
{Ft} is a sequence of v × v matrices

and

the observation equation

Y t = GtX t + W t, t = 1, 2, . . . , (15)

where
{Y t} is a w-variate process describing the observed state of some system,
{W t} ∼ WN(0, {Rt}), and
{Gt} is a sequence of w × v matrices.
Further {W t} and {V t} are uncorrelated. To complete the specification it is
assumed that the initial state X1 is uncorrelated with {W t} and {V t}.
Definition 13.1 (State-space representation) A time series {Y t} has a
state-space representation if there exists a state-space model for {Y t} as spe-
cified by equations (14) and (15).

Put
Pt(X)

def
= P (X | Y 0, . . . , Y t),

i.e. the vector of best linear predictors of X1, . . . , Xv in terms of all components
of Y 0, . . . , Y t.
Linear estimation of X t in terms of

• Y 0, . . . , Y t−1 defines the prediction problem;

• Y 0, . . . , Y t defines the filtering problem;

• Y 0, . . . , Y n, n > t, defines the smoothing problem.

Theorem 13.1 (Kalman Prediction) The predictors X̂ t
def
= Pt−1(X t) and

the error covariance matrices

Ωt
def
= E[(X t − X̂ t)(X t − X̂ t)

′]

are uniquely determined by the initial conditions

X̂1 = P (X1 | Y 0), Ω1
def
= E[(X1 − X̂1)(X1 − X̂1)

′]

and the recursions, for t = 1, . . .,

X̂ t+1 = FtX̂ t + Θt∆
−1
t (Y t −GtX̂ t) (16)

Ωt+1 = FtΩtF
′
t + Qt −Θt∆

−1
t Θ′

t, (17)

where

∆t = GtΩtG
′
t + Rt,

Θt = FtΩtG
′
t.

The matrix Θt∆
−1
t is called the Kalman gain.
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Theorem 13.2 (Kalman Filtering) The filtered estimates X t|t
def
= Pt(X t)

and the error covariance matrices

Ωt|t
def
= E[(X t −X t|t)(X t −X t|t)

′]

are determined by the relations

Xt|t = Pt−1(X t) + ΩtG
′
t∆

−1
t (Y t −GtX̂ t)

and
Ωt|t+1 = Ωt − ΩtG

′
t∆

−1
t GtΩ

′
t.

Theorem 13.3 (Kalman Fixed Point Smoothing) The smoothed estimates

X t|n
def
= Pn(X t) and the error covariance matrices

Ωt|n
def
= E[(X t −X t|n)(X t −X t|n)′]

are determined for fixed t by the recursions, which can be solved successively
for n = t, t + 1, . . . :

Pn(X t) = Pn−1(X t) + Ωt.nG
′
n∆−1

n (Y n −GnX̂n),

Ωt.n+1 = Ωt.n[Fn −Θn∆−1
n Gn]′,

Ωt|n = Ωt|n−1 − Ωt.nG
′
n∆−1

n GnΩ′
t.n,

with initial conditions Pt−1(X t) = X̂ t and Ωt.t = Ωt|t−1 = Ωt found from
Kalman prediction.
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