Markov chains

- 1. Let $(X_n)_{n\geq 0}$ be a stationary Markov chain. Show that $Cov(X_k, X_\ell)$ depends only on $|k \ell|$.
- 2. Let $(\varepsilon_n)_{n\geq 0}$ be i.i.d. Gaussian variables with zero mean and variance σ^2 . Let $|\alpha| < 1$ and consider the AR(1) process

$$X_n = \alpha X_{n-1} + \varepsilon_n, \quad n \ge 1,$$

with $X_0 = \varepsilon_0$.

- (a) Find the mean and the variance of X_n . Is $(X_n)_{n\geq 0}$ stationary?
- (b) Show that for all $0 \le h \le n$,

$$\operatorname{Corr}(X_n, X_{n-h}) = \alpha^h \sqrt{\frac{\operatorname{Var}(X_{n-h})}{\operatorname{Var}(X_n)}}.$$

- (c) Show that $\lim_{n\to\infty} \operatorname{Var}(X_n) = \sigma^2/(1-\alpha^2)$ and $\lim_{n\to\infty} \operatorname{Corr}(X_n, X_{n-h}) = \alpha^h$.
- (d) Now, suppose that $X_0 = \varepsilon_0 / \sqrt{1 \alpha^2}$. Is $(X_n)_{n \ge 0}$ stationary?

The Gibbs sampler

3. Let p and q be Markov transition densities on $X \subseteq \mathbb{R}^d$. The product $p \otimes q$ of p and q is defined as

$$[p\otimes q](z\mid x) = \int p(y\mid x)q(z\mid y)\,dy \quad ((x,z)\in \mathsf{X}^2).$$

- (a) Show that $p \otimes q$ is a Markov transition kernel on X.
- (b) Assume that p and q both allow π as a stationary distribution. Show that also $p \otimes q$ allows π as a stationary distribution.
- 4. Recall that the Gibbs sampler simulates an *m*-variate Markov chain $(X_n)_{n\geq 0}$ having some multivariate distribution π as stationary distribution by, in each sub-step, sampling from the conditional distributions $\pi_{\ell}(x^{\ell} \mid x^{-\ell})$, where $x^{-\ell} = (x^1, \dots, x^{\ell-1}, x^{\ell+1}, \dots, x^m)$.
 - (a) Show that each sub-step of the Gibbs sampler is π -reversible (i.e., satisfies detailed balance for π).
 - (b) Show that one full iteration (comprising *m* sub-steps) of the Gibbs sampler (see Lecture 10) allows π as a stationary distribution.

Barker's MCMC algorithm

5. Barker's MCMC algorithm targeting some density π (known up to a normalizing constant) on $\mathsf{X} \subseteq \mathbb{R}^d$ generates a Markov chain $(X_n)_{n\geq 0}$ as follows: given X_n ,

$$\begin{array}{l} \operatorname{draw} X^* \sim r(x \mid X_n);\\ \operatorname{set} X_{n+1} \leftarrow \begin{cases} X^* & \text{w. pr. } \frac{\pi(X^*)}{\pi(X^*) + \pi(X_n)};\\ X_n & \text{otherwise} \end{cases} \end{array}$$

Here *r* is some *symmetric* proposal transition density.

- (a) Find the transition density q of Barker's algorithm.
- (b) Show that q is π -reversible.

(c) What should be regarded as a main difference between Barker's algorithm and the Metropolis-Hastings algorithm (with symmetric proposal distribution *r*)? Which method seems preferable and why? (Hint: consider the situation where $\pi(X^*)$ is very close to $\pi(X_n)$.)