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HOME ASSIGNMENT 2, SF2955 COMPUTER INTENSIVE METHODS IN MATHEMATICAL
STATISTICS

Teacher: Johan Westerborn
All MATLAB-files needed are available through the course home page.
The following is to be submitted:

• An email containing two report files (see below), one with names and one anonymous as well
as all your m-files with a file named group_number_HA2_matlab.m that runs your analysis, or
similar depending on your language of choice. This email has to be sent to johawes@kth.se

by Thursday 18 May, 13:00:00.

• A report, named group number-HA2-report.pdf, of maximum 7 pages in pdf format with
names of group members, a version of this report named HA2-report.pdf without names
should also be included. The report should provide detailed solutions to all problems. The
presentation should be self-contained and understandable without access to the code. One
printed and stitched copy of the report (with name of group members) is brought to the
lecture on Thursday 18 May.

Discussion between groups is permitted, as long as your report reflects your own work.
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Bayesian analysis of coal mine disasters—constructing a

complex MCMC algorithm

In this problem we will generalise the coal mining example in the book (See Chapter 11.2.1) from
one breakpoint to d− 1 breakpoints. First we need some notation. Let t1 = 1851 and td+1 = 1963
be the fixed end points of the dataset and denote by ti, i = 2, . . . , td, the breakpoints. We collect
end points and break points in a vector t = (t1, . . . , td+1). The disaster intensity in each interval
[ti, ti+1) is λi and we let λ = (λ1, . . . , λd).
Another difference from the example in the book is that instead of calculating the number of
disasters each year we will use time continuous data where τ = (τ1, . . . , τn) denotes the time
points of the n = 191 disasters (available in the file coal mine.txt). We model the data on the
interval t1 ≤ t ≤ td+1 using an inhomogeneous Poisson process with intensity

λ(t) =
d∑
i=1

λi1[ti,ti+1)(t).

From the time points of the disasters we compute

ni(τ ) = number of disasters in the sub-interval [ti, ti+1) =
n∑
j=1

1[ti,ti+1)(τj).

We put a Γ(2, θ) prior on the intensities with a Γ(2, ϑ) hyperprior on θ, where ϑ is a fixed hyper-
parameter that needs to be specified. In addition, we put a prior

f(t) ∝

{∏d
i=1(ti+1 − ti), for t1 < t2 < . . . < td < td+1,

0, otherwise,

on the breakpoints, preventing the same from being located too closely. Using theory of Poisson
processes, it can be shown that

f(τ |λ, t) ∝ exp

(
−

d∑
i=1

λi(ti+1 − ti)

)
d∏
i=1

λ
ni(τ )
i .

To sample from the posterior f(θ,λ, t | τ ) we will construct a hybrid MCMC algorithm as follows.
All components except the breakpoints t can be updated using Gibbs sampling. To update the
breakpoints we use a Metropolis-Hastings step. There are several possible proposal distributions
for the MH step:

• Random walk proposal: update one breakpoint at a time. For each breakpoint ti we generate
a candidate t∗i according to

t∗i = ti + ε, with ε ∼ Unif(−R,R)

and R = ρ(ti+1 − ti−1).

• Independent proposal: update one breakpoint at a time. For each breakpoint ti we generate
a candidate t∗i according to

t∗i = ti−1 + ε(ti+1 − ti−1), with ε ∼ Beta(ρ, ρ).
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This corresponds to a scaled and shifted beta-distribution for t∗i with density function

f(ti|ti+1, ti−1) =
Γ(2ρ)

Γ(ρ)2
(ti − ti−1)

ρ−1 (ti+1 − ti)ρ−1

(ti+1 − ti−1)2ρ−1
.

In both cases ρ is a tuning parameter of the proposal distributions.

Problem 1

(a) Compute, up to normalizing constants, the marginal posteriors f(θ | λ, t, τ ), f(λ | θ, t, τ ),
and f(t | θ,λ, τ ). In addition, try to identify the distributions.

(b) Construct a hybrid MCMC algorithm that samples from the posterior f(θ,λ, t | τ ). Pick
one of the possible updating options for t.

(c) Investigate the behavior of the MCMC chain for 1, 2, 3, and 4 breakpoints.

(d) How sensitive are the posteriors to the choice of the hyperparameter ϑ?

(e) How sensitive is the mixing and the posteriors to the choice of ρ in the proposal distribution?

Parametric bootstrap for the 100-year Atlantic wave

The data file atlantic.txt contains the significant wave-height recorded 14 times a month during
several winter months in the north Atlantic. A Gumbel distribution with distribution function

F (x;µ, β) = exp

(
− exp

(
−x− µ

β

))
, x ∈ R,

where µ ∈ R and β > 0, is a good fit to the data. The parameters can be estimated using the
matlab function est gumbel.m.
The expected 100-year return value of the significant wave-height gives the largest expected value
during a 100-year period. The T th return value is given by F−1(1 − 1/T ;µ, β). We note that we
have 14 observations during a month and three winter months during a year, thus T = 3 · 14 · 100.

Problem 2

(a) Find the inverse F−1(u;µ, β).

(b) Provide a parametric bootstrapped 95% confidence intervals for the parameters.

(c) Provide a one sided parametric bootstrapped 95% confidence interval for the 100-year return
value.

Good luck!


