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Some course information
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Course material

m The following material will be used:

m Slides. Will be available online shortly after each lecture.

m Skéld, M. (2005). Computer Intensive Statistical Methods.
These notes can be downloaded through the course home
page.

m Some recommended additional reference material:

m Robert. C. and Casella, G. (2004). Monte Carlo Statistical
Methods (2nd ed.).

m Doucet, A., de Freitas, N., Gordon, N. (eds.) (2001).
Sequential Monte Carlo methods in Practice.

m Efron, B. and Tibshirani, R. J. (1994). An Introduction to the
Bootstrap.
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Some course information
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People and administration

m The course will be taught by

m Johan Westerborn (lectures, exercises),
m Henrik Hult (examiner).

m All information concerning course registration, exam
application, etc., is available through

https://www.kth.se/sci/institutioner/math/utb/studentexp

(important also for PhD students, who are not able to
register via “Mina sidor”).
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Course schedule and homepage

m The course schedule is irregular, but there are in general
three meetings per week:

exercise class (E) — lecture (L) — lecture.

m The exercise classes are launched first in Week 2; thus,
there are (three lectures) during the first course week.

m Information and MATLAB files will be available through

http://www.math.kth.se/matstat/gru/sf2955/.
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Some course information
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Examination

m The examination comprises
m two larger projects (3.0 credits, grade scale: P, F) handed
out during Weeks 3 and 6, respectively. Each project
requires the submission of a report. The projects, which are
solved in pairs, treat
sequential Monte Carlo methods, and
Markov chain Monte Carlo methods and Bayesian inference.
The projects are graded through a mandatory peer-review
procedure, where each group reviews the reports of 2 other
groups.
m A written exam (4.5 credits, grade scale: A, B, C, D, E, FX,
F) taking place on 30 May 2017, 14—19.
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0000e

Course contents

m Part |I: Monte Carlo integration

m Simulation and Monte Carlo integration (Weeks 1-2),

m Sequential Monte Carlo methods (3—4),

m Markov chain Monte Carlo (MCMC) methods (4-5).
m Part II: Applications to inference

m Applications of MCMC to Bayesian statistics (5-6),

m Bootstrap (7-8),

m The EM algorithm (8),

m Permutation tests (8).
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Overview of the Monte Carlo method
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Preliminaries

Some fundamental concepts of probability

m A probability space contains

m a sample space Q, which is the set of possible outcomes
w € Q. Subsets A C Q of the sample space are called
events.
m a probability measure P assigning a value in [0, 1] to each
event such that
(i) P(Q) =1,
(i) P(UieiAi) = >_;c;P(A;) for any (countable) collection (A;)ic
of pairwise disjoint events.
m Given a probability space (2, P), a random variable X is a
function Q — X, where X is called the state space of X
(typically RY).
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Preliminaries

Some fundamental concepts of probability (cont.)

m Given a random variable X on some probability space
(2, P), the function X 5 x — F(x) = P(X < x) is called
distribution function of X.

m In the case where X = R9, a function f : X — R such that
forall x = (xy,...,Xq),

P(ng):/_):o---/_):f(z)dz,

is called the density of X. Consequently,
f(x) = Ox, - - - Ox, F(x) for all x.
m Two random variables X and Y are independent if

f(x,y) = f(x)f(y), forallx,y.
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Overview of the Monte Carlo method
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Preliminaries

Some fundamental concepts of probability (cont.)

m The integral

is called the expectation of X.

m If ¢ is some function X — R and X is some random
variable, then ¢(X) is again a random variable with
expectation

E(#(X)) = /X H(X)F(x) dx.
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Overview of the Monte Carlo method
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Principal aim

Principal aim of the course

m Most problems treated in this course are related to the
computation of some expectation

where
m X is a random variable taking values in X C R? (where
d € N* may be very large),
m f: X — R, is the probability density on X (referred to as the
target density), and
m ¢ : X — Ris some function (referred to as the objective
function) such that the above expectation is finite.

m Covers a large set of fundamental problems in statistics,
numerical analysis, and other scientific disciplines!
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Overview of the Monte Carlo method
(o] lelelele]e]

Interlude: Two fundamental results in statistics

The law of large numbers

m The central limit theorem (CLT) and the law of large
numbers (LLN) are the most important results in probability
and statistics.

m The LLN can be stated as follows.

Let X', X2, X3, ... be independent and identically distributed
(iid) random variables with mean 1. and set Sy = Z,’i 1 X'. Then

lim lSN = u (with probability one).
N—oco N

m As we will see, the CLT describes the error between Sy/N
and p for large N and provides the rate of convergence.
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Interlude: Two fundamental results in statistics

Convergence in distribution: definition

m Let X and X', X2, X3, ... be random variables.

m Denote by Fy(x) = P(XN < x) and F(x) = P(X < x) the
distribution functions of XN and X, respectively.

m Let Cr be the set of continuity points of F.

m The CLT describes convergence in distribution, which is
defined as follows.

Definition

(XN) is said to converge in distribution to X if for all x € C,

Nli_r)noo Fn(x) = F(x).
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Interlude: Two fundamental results in statistics

Convergence in distribution: remarks

m In words, convergence in distribution means that the
probability that Xy falls in a given range is approximately
equal to the probability that X falls in that range, provided
N is sufficiently large.

m Notation: Xy - X.

m The condition x € Cr is essential. Indeed, let Xy = 1/N
and X = 0 be deterministic; then

Fn(0) =P(Xy <0) =0 -» F(0) =P(X <0) =1.
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Overview of the Monte Carlo method
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Interlude: Two fundamental results in statistics

The central limit theorem

m The CLT can be stated as follows.

Let X, X2, X3,. .. be iid with mean . and variance o* and set
Sy =N, X'. Then

\/N(;VSN—M> 4z,

where Z is normally distributed with zero mean and variance

0.

m This means that for large N,
Sn T N(uN, o2N).
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Interlude: Two fundamental results in statistics

Rolling dice

m As an example, we roll repeatedly a fair die and call the
outcomes X', X2 X3, ...

m Recall that u = E(X') = 3.5 and ¢ = V(X') ~ 2.9.
m After each roll we note the sum Sy = Z,’L X'
m MATLAB simulation:

X = randi(6,1,N);
S = cumsum (X) ;
means = S./(1:N);
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Interlude: Two fundamental results in statistics

Rolling dice: outcome

Simulation of 2000 sequences

02

Normalised histogram
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Figure: Normalised histogram (relative frequences) of 2,000
replicates of 1/2,000(Sz,000/2,000 — 3.5) along with N(0,2.9).
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The basic Monte Carlo sampler

The Monte Carlo (MC) method in a nutshell (Ch. 4)

m Let (X') be independent random variables with density .
Then, by the LLN, as N — oo,

] n B
Z¢ X) 7 = B(¢(X)) = /X H()F(x) dix

m Using this, the basic MC sampler can be formulated as:

fori=1— Ndo
| draw X' ~ f;
end

set 7y — SN o(XT)/N
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The basic Monte Carlo sampler

A

(a) J. v. Neumann (b) S. Ulam (c) N. Metropolis

Figure: The inventors of Monte Carlo simulation (the Los Alamos
Scientific Laboratory; 40’s)
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The basic Monte Carlo sampler

“The first thoughts and attempts | made to practice [the Monte Carlo
method] were suggested by a question which occurred to me in 1946
as | was convalescing from an illness and playing solitaires. The
question was what are the chances that a Canfield solitaire laid out
with 52 cards will come out successfully? After spending a lot of time
trying to estimate them by pure combinatorial calculations, |
wondered whether a more practical method than ‘abstract thinking’
might not be to lay it out say one hundred times and simply observe
and count the number of successful plays. This was already possible
to envisage with the beginning of the new era of fast computers, and |
immediately thought of problems of neutron diffusion and other
questions of mathematical physics, and more generally how to
change processes described by certain differential equations into an
equivalent form interpretable as a succession of random operations.
Later[in 1946], | described the idea to John von Neumann, and we
began to plan actual calculations.”

—Stanistav Ulam

Johan Westerborn KTH Institute of Technology

Computer Intensive Methods (26)



Overview of the Monte Carlo method
[e]e]e]e] lele]

The basic Monte Carlo sampler

The curse of dimensionality

m Recall that we are solving a possibly high dimensional
integration problem.

m Most numerical integration methods are of order
O(N~—¢/9), where N is the number of function evaluations
needed to approximate the integral and ¢ > 0 is some
constant—cf. the trapezoidal method (¢ = 2) or the
Simpson method (¢ = 4).

m More specifically, this means that there is a constant
C < oo such that for all N,

en |7 —my| < BN/,
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The basic Monte Carlo sampler

The curse of dimensionality

m Consequently, in order to guarantee that ey < 6 for some
small 6 > 0, the number N should satisfy

~\ d/c
c

N> |- .
anz(5)

m When ¢ is small, ¢/6 > 1. This means that for a given
threshold the number of function evaluations grows
exponentially with the dimension d of X.

ENC°/d < § = NO/D >

S| O

m This prevents numerical integration from working efficiently
in high dimensions.
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The basic Monte Carlo sampler

Rate of convergence of MC

m For the MC method, the error is random. However, the CLT
implies, under the assumption that o2(¢) £ V(¢(X)) < oo,

VN (7y — 7) -2 N(0, 62(9)).

m In particular,

N
Vi —7) = (NZ X') N o),

implying that
D(rn— )& V(1) = \%a(gb).
m Thus, the MC convergence rate O(N~"/2) is independent
of d!
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A few examples
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Example: Integration

m The problem of computing any integral of form

T = / h(x) dx
(0,1)d

can be perfectly cast into our framework by letting

X+ (0,1)°,
¢ < h,
f(— ]]_(071)d (: U(O, 1)d)

Johan Westerborn KTH Institute of Technology

Computer Intensive Methods (31)



A few examples
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Example: Integration (cont.)

m For an example in the case d = 1, let
h(x) = sin?(1/cos(log(1 + 27x))), x € (0,1):

h(x) = sin’(1/cos(log(1 + 2r)))
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Example: Integration (cont.)

m In MATLAB:

h = @(x) (sin(l./cos(log(l + 2+pixx))))."2;
U = rand(1,N);
tau = mean (h(U));

MC convergence

0

062 1

MC estimate

5000 10000 15000
Sample size
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Example: Integration (cont.)

m Now, let Q C RY be arbitrary and consider the general case

T:/Qh(X) ax.

m Then we may choose some positive reference density g on
Q (e.g. the N(0, 1) density if Q = RY) and write

_ [ hx)
/Qh(x) dx_/Q (X)g(x) dx,

which can again be cast into the MC framework by letting

X<+ Q,

¢ < h/g,
f+g.
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Example: Computing the size of a BIG set

m Say that we want to compute the size of a finite but huge
set S. Assume that S C T and define a random variable X
taking values in T with probabilities p(x) = P(X = x) > 0,
xeT.

m Then we can write

1

S=) 1s(x) =) Wﬂs(X)p(X) = E(1s(X)/p(X)),
xeT xeT p
which again fits into our MC integration framework with
X<« T,
¢ < Is/p,
f+p.
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Example: Conditional distributions

m Often the joint density p(x, y) of a pair (X, Y) of random
variables is easily obtained while the density

_ pxy)
p(X|y)— fp(X,y)dX

of the conditional distribution of X given Y is by far more
complicated due to the normalizing integral. Again MC
applies, especially in the shape of Markov Chain Monte
Carlo methods (MCMC, Weeks 4-6).

Johan Westerborn KTH Institute of Technology

Computer Intensive Methods (36)



A few examples
0000008000000 00

Example: Conditional distributions

m Computing conditional distributions play a critical role in
models where X is latent and only partially observed
through Y, e.g., in filtering of a signal/image from noisy
observations.

m Moreover, determining conditional distributions is essential
in

m frequentist statistic and, in particular, maximum likelihood
estimation in latent data models via the
expectation-maximization (EM) algorithm (Week 8).

m Bayesian statistics, where the variable X plays the role of
an unknown parameter (usually denoted by 6) and p(x | y)
is the so-called posterior distribution of the parameter given
observed data Y (Week 6).

Johan Westerborn KTH Institute of Technology

Computer Intensive Methods (37)



A few examples
000000080000 000

Example: Meteorology/climate science

m Given precipitation measurements at weather stations,
estimate the full precipitation field using some
spatio-temporal model.
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Example: Meteorology/climate science (cont.)

m The accuracy of the interpolated precipitation can be
analyzed using Bayesian statistics MCMC methods.
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Example: Pricing of contingent claims

m Diffusion processes are processes related to Brownian
motion. These are fundamental within mathematical
finance modeling.

12 Qct 10 0:80.96 H:83.40 L:79.04 C:81.89 Vol:27.77M +1.75 (2.18%) "
p 8189
[
A
/ \‘f\’ 0
y/\ \/\*/
AL
P
v \
N M 5

2004 2005 2006 2007 2008 2009 2010

Figure: Evolution of the Nike, Inc. stock price S; for
t € (2003,2011).
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Example: Pricing of contingent claims (cont.)

mletSE (St)t>0 be a price process. A contingent claim is a
financial contract which stipulates that the holder of the
contract will obtain X SEK at time T, where

X = ®(S7) = “contract function of St”.

m Under certain assumptions, one may prove that the fair
price F of the claim X attime t < T is given by

F(s.t) = e T DEL (o(S7) | St = 8)

where Q indicates the “risk neutral dynamics” of S and r is
the interest rate.

m Thus, we may compute the price by (i) simulating S|S; = s
repeatedly, (i) compute the claim for each realization, and
(iii) take the mean!
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Sequential MC problems

m In the sequential Monte Carlo framework, we aim at
estimating sequentially sequences (75)n>0 Of expectations

7 = Eq,(¢(Xom)) = /X 6(X0.n)n(X0:n) Ot

over spaces X, of increasing dimension (which can be very
large), where the densities (f,),>0 are known up to
normalizing constants only, i.e., for every n > 0,

Zn( Xo-
fn(XO:n) = n(co.n)7
n

where z,(Xo.n) > 0 and ¢, is an unknown constant.
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Example: Filtering in genetics

m Cancer cells might have parts of chromosomes with
different copy numbers. These numbers can be modeled
efficiently using hidden Markov models (HMM), which are
estimated efficiently using SMC (Weeks 3—4).

Chromosame 11 - GWD5296

i
i
s !
i
1
i

Log2(T/R)
=
.
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Example: Filtering in target tracking

m An observer obtains noisy observations of the bearing of a
moving target (such as a submarine). In this HMM, the
conditional distribution of the target given the observations
can be estimated online using SMC methods (Weeks 1-2).

y

A

Target  Target trajectory X

0(X)
Observer
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Further fields of application

m At present, MC methods are successfully applied within,
among others,

mathematical finance and econometrics,

physics (nuclear physics, statistical physics, plasma

physics, ...) and astronomy,

signal processing,

biology (genetics, molecular biology, ecology, ...),

climate sciences,

automatic control,
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What do we need to know?

m OK, so what do we need to master for having practical use
of the MC method?

m Well, for instance, the following questions should be
answered:

How do we generate the needed input random variables?

How many computer experiments should we do (i.e. how
large should N be)? What can be said about the error and
the numerical stability of the algorithm?

Can we exploit problem structure to speed up the
computation?
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Next lecture

m Next time we will deal with the first two questions and
discuss

m Pseudo-random number generation and
m MC output analysis.

See you!
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