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Last time: the Metropolis-Hastings (MH) algorithm

We assumed that were able to simulate from a transition
density r(z | x), referred to as the proposal kernel, on X.
The MH algorithm simulates recursively a sequence of
draws (Xk ), forming a Markov chain on X, through the
following mechanism: given Xk ,

draw X ∗ ∼ r(z | Xk ) and

set Xk+1 =

X ∗ w. pr. α(Xk ,X ∗)
def
= 1 ∧ f (X ∗)r(Xk | X ∗)

f (Xk )r(X ∗ | Xk )
,

Xk otherwise.

(Here we used the notation a ∧ b def
= min{a,b}.) The

scheme is initialized by drawing X1 from some arbitrary
initial distribution χ.
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Last time: the MH algorithm: pseudo-code

draw X1 ∼ χ;
for i = 1→ (N − 1) do

draw X ∗ ∼ r(z | Xk );
set α← 1 ∧ f (X∗)r(Xk |X∗)

f (Xk )r(X∗|Xk )
;

draw U ∼ U(0,1);
if U ≤ α then

Xk+1 ← X ∗;
else

Xk+1 ← Xk ;
end

end
set τMCMC

N ←
∑N

k=1 φ(Xk )/N;
return τMCMC

N
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Last time: different types of proposal kernels

There are a number of different ways of constructing the
proposal kernel r .
The three main classes are

independent proposals,
symmetric proposals, and
multiplicative proposals.
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Last time: convergence of the MH algorithm

The following results are fundamental:

Theorem (detailed balance of the MH sampler)
The MH sampler satisfies detailed balance for the target
density f .

Corollary (global balance of the MH sampler)

The Markov chain generated by the MH sampler allows f as a
stationary distribution.

In addition, one may prove, under weak assumptions, that
the MH algorithm is also geometrically ergodic, implying
that it satisfies an LLN.
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The Gibbs sampler

In the following,
assume that the space X can be divided into m blocks, i.e.,
x = (x1, . . . , xm) ∈ X, where each block may be
vector-valued itself.
assume that we want to sample a multivariate distribution f
on X.
denote by xk the k th component of x and by x−k = (x`)` 6=k
the set of remaining components.
denote by fk (xk | x−k ) = f (x)/

∫
f (x)dxk the conditional

distribution of X k given the other components X−k = x−k

and
assume (initially) that it is easy to simulate from fk (xk | x−k )
for all k = 1, . . . ,m.
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The Gibbs sampler (cont.)

The Gibbs sampler simulates recursively a sequence of
values (Xk ), forming a Markov chain on X, using the
following mechanism.
Given Xk = (X 1

k , . . . ,X
m
k ),

draw X 1
k+1 ∼ f1(x1|X 2

k , . . . ,X
m
k ),

draw X 2
k+1 ∼ f2(x2|X 1

k+1,X
3
k , . . . ,X

m
k ),

draw X 3
k+1 ∼ f3(x3|X 1

k+1,X
2
k+1,X

4
k , . . . ,X

m
k ),

. . .
draw X m

k+1 ∼ fm(xm|X 1
k+1,X

2
k+1, . . . ,X

m−1
k+1 ).

In other words, at the `th round of the cycle generating
Xk+1, the `th component of Xk+1 is updated by simulation
from its conditional distribution given all other components.
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Convergence of the Gibbs sampler

As for the MH algorithm, the following holds true.

Theorem
The chain (Xk ) generated by the Gibbs sampler has f as
stationary distribution.

In addition, one may prove, under weak assumptions, that
the Gibbs sampler is also geometrically ergodic, implying
that

τMCMC
N =

1
N

N∑
k=1

φ(Xk )→ τ as N →∞.
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Example: a tricky bivariate distribution

Suppose that we want to sample the distribution on
{0,1,2, . . . ,n} × (0,1) given by

f (x , y) ∝ n!
(n − x)!x!

yx+α−1(1− y)n−x+β−1.

which is very complex and hard to sample from.
The conditional distributions are however simple; indeed

X | Y = y ∼ Bin(n, y),
Y | X = x ∼ Beta(x + α,n − x + β).

Thus, the problem of sampling f (x , y) can be perfectly cast
into the framework of the Gibbs sampler.
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Example: a tricky bivariate distribution (cont.)

burn_in = 1000;
M = N + burn_in;
X = zeros(1,M);
Y = X;
X(1) = 5;
Y(1) = 0.5;
for k = 1:(M - 1),

x = binornd(n,Y(k));
X(k + 1) = x;
Y(k + 1) = betarnd(x + alpha,n - x + beta);

end
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Example: a tricky bivariate distribution (cont.)
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Figure: Comparison between the true density and the histogram of
Yk , k = 1001, . . . ,11000.
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Variance of MCMC estimators

As mentioned, the MH and Gibbs samplers are
geometrically ergodic, implying an LLN for the resulting
estimators. In addition, one may establish a CLT.
For this purpose, let

r(`) = lim
n→∞

C(φ(Xn+`), φ(Xn))

be the covariance function of the MCMC chain at
stationarity.
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Variance of MCMC estimators (cont.)

The following holds true.

Theorem
For the MCMC samplers discussed above it holds that

√
N(τMCMC

N − τ) d.−→ N(0, σ2) as N →∞,

where

σ2 = r(0) + 2
∞∑
`=1

r(`).
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Estimating the variance of MCMC samplers

For i.i.d.-based Monte Carlo integration we used the
sample variance (Matlab: var) to estimate V(φ(X )).
However, now we need the entire covariance function r(`).
A number of different approximative solutions are possible,
e.g.,

assume a parametric form of the covariance function,
usually that of an AR process of low order, and estimate it,
use only samples that are far apart, ensuring approximate
independence,
divide the samples into blocks that are large enough to be
approximately independent. Then calculate averages of
each block and use these to estimate the standard
deviation.
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Next lecture

Block-based estimation of the MCMC asymptotic variance,
Statistics!
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