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Last time: the Metropolis-Hastings (MH) algorithm
@000

Last time: the Metropolis-Hastings (MH) algorithm

m We assumed that were able to simulate from a transition
density r(z | x), referred to as the proposal kernel, on X.
m The MH algorithm simulates recursively a sequence of

draws (Xx), forming a Markov chain on X, through the
following mechanism: given X,
m draw X* ~ r(z | Xi) and
of o FOXT)r(Xe | X7)
X* WL pr. o Xe, X*) €1
m set X1 = W Pr- (X X) = 1A e X %)
X otherwise.

(Here we used the notation a A b < min{a, b}.) The
scheme is initialized by drawing X; from some arbitrary
initial distribution .
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Last time: the Metropolis-Hastings (MH) algorithm
[o] lele}

Last time: the MH algorithm: pseudo-code

draw X; ~ x;
fori=1—(N—-1)do
draw X* ~ r(z | Xk);

f(X*)r( X | X*) .
seta 1A f((Xk))fr((X}ﬂ\Xk))’

draw U ~ U(0,1);
if U < o then
| Xiyr X5
else
| Xigt X
end
end
set TMVC S L (Xk)/N;
return 7y¢
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Last time: the Metropolis-Hastings (MH) algorithm
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Last time: different types of proposal kernels

m There are a number of different ways of constructing the
proposal kernel r.
m The three main classes are

m independent proposals,
m symmetric proposals, and
m multiplicative proposals.
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Last time: the Metropolis-Hastings (MH) algorithm

[eJe]e] ]

Last time: convergence of the MH algorithm

m The following results are fundamental:

Theorem (detailed balance of the MH sampler)

The MH sampler satisfies detailed balance for the target
density f.

\

Corollary (global balance of the MH sampler)

The Markov chain generated by the MH sampler allows f as a
stationary distribution.

A\

m In addition, one may prove, under weak assumptions, that
the MH algorithm is also geometrically ergodic, implying
that it satisfies an LLN.
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The Gibbs sampler (Ch. 5.4)
00000

The Gibbs sampler

m In the following,

m assume that the space X can be divided into m blocks, i.e.,
x = (x',...,x™ € X, where each block may be
vector-valued itself.

m assume that we want to sample a multivariate distribution f
on X.

m denote by x the kth component of x and by x =% = (x*) .«
the set of remaining components

m denote by f (x* | x~ (x)/ [ f(x) dx* the conditional
distribution of X* glven the other components X% = x—k
and

m assume (initially) that it is easy to simulate from fi(x* | x %)
foralk=1,....m
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The Gibbs sampler (Ch. 5.4)
(o] lelele]e]

The Gibbs sampler (cont.)

m The Gibbs sampler simulates recursively a sequence of
values (Xx), forming a Markov chain on X, using the
following mechanism.

m Given X = (X},.... X",

m draw X}, ~ fi(x[XE, ..., X]),
m draw X2, ~ B(ORIXL 4, X2, ..., X)),

3 3| x1 2 4
m draw Xi 4 ~ (X[ Xy g, X, Xics - XK,
n

m draw X[, ~ fon (XX, XB oy XES).
m In other words, at the ¢th round of the cycle generating

Xk 1, the ¢th component of Xi. 1 is updated by simulation
from its conditional distribution given all other components.
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The Gibbs sampler (Ch. 5.4)
[e]e] lele]e]

Convergence of the Gibbs sampler

m As for the MH algorithm, the following holds true.

The chain (Xy) generated by the Gibbs sampler has f as
stationary distribution.

m In addition, one may prove, under weak assumptions, that
the Gibbs sampler is also geometrically ergodic, implying
that

N
TNMe NZ (Xk) =7 as N — oo.
k=1
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The Gibbs sampler (Ch. 5.4)
[e]e]e] le]e]

Example: a tricky bivariate distribution

m Suppose that we want to sample the distribution on
{0,1,2,...,n} x (0,1) given by

n!

X+a—1 ) \n—x+p-1
(n—x)!x!y (1=) '

f(x,y) x
which is very complex and hard to sample from.
m The conditional distributions are however simple; indeed
m X|Y=y~Bin(n,y),
mY|X=x~Beta(x+a,n—x+p).
m Thus, the problem of sampling f(x, y) can be perfectly cast
into the framework of the Gibbs sampler.
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The Gibbs sampler (Ch. 5.4)
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Example: a tricky bivariate distribution (cont.)

burn_in = 1000;
M = N + burn_in;

X = zeros(1l,M);
Y = X;
X(1l) = 5;

for k = 1: (M - 1),

binornd(n,Y (k));

X(k + 1) = x;

Y(k + 1) = betarnd(x + alpha,n - x + beta);

w
Il
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The Gibbs sampler (Ch. 5.4)
O0000e

Example: a tricky bivariate distribution (cont.)

Normalized histogram of Gibbs output (Y-components only)
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Figure: Comparison between the true density and the histogram of
Yk, k =1001,...,11000.
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Variance of MCMC samplers
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Variance of MCMC samplers
@000

Variance of MCMC estimators

m As mentioned, the MH and Gibbs samplers are
geometrically ergodic, implying an LLN for the resulting
estimators. In addition, one may establish a CLT.

m For this purpose, let
r(f) = n”_>moo C(d(Xnre), 9(Xn))

be the covariance function of the MCMC chain at
stationarity.
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Variance of MCMC samplers
[o] lele}

Variance of MCMC estimators (cont.)

m The following holds true.

For the MCMC samplers discussed above it holds that

\/N(TAIACMC —7) o N(0,0’z) as N — oo,

where -
o? =r(0)+2) r(0).
=1
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Variance of MCMC samplers
[e]e] e}

Estimating the variance of MCMC samplers

m For i.i.d.-based Monte Carlo integration we used the
sample variance (Matlab: var) to estimate V(¢4(X)).

m However, now we need the entire covariance function r(¢).
A number of different approximative solutions are possible,
e.g.,

m assume a parametric form of the covariance function,
usually that of an AR process of low order, and estimate it,

m use only samples that are far apart, ensuring approximate
independence,

m divide the samples into blocks that are large enough to be
approximately independent. Then calculate averages of
each block and use these to estimate the standard
deviation.
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Variance of MCMC samplers
[e]e]e] ]

Next lecture

m Block-based estimation of the MCMC asymptotic variance,
m Statistics!

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (19)



	Last time: the Metropolis-Hastings (MH) algorithm
	The Gibbs sampler (Ch. 5.4)
	Variance of MCMC samplers

