

Computer Intensive Methods in Mathematical Statistics

Johan Westerborn

Department of mathematics
KTH Royal Institute of Technology
johawes@kth.se

Lecture 10
Markov chain Monte Carlo III
26 April 2017

Plan of today's lecture

- 1 Last time: the Metropolis-Hastings (MH) algorithm
- 2 The Gibbs sampler (Ch. 5.4)
- 3 Variance of MCMC samplers

Outline

1 Last time: the Metropolis-Hastings (MH) algorithm

2 The Gibbs sampler (Ch. 5.4)

3 Variance of MCMC samplers

Last time: the Metropolis-Hastings (MH) algorithm

- We assumed that we were able to simulate from a transition density $r(z | x)$, referred to as the **proposal kernel**, on X .
- The MH algorithm simulates recursively a sequence of draws (X_k) , forming a Markov chain on X , through the following mechanism: given X_k ,
 - draw $X^* \sim r(z | X_k)$ and
 - set $X_{k+1} = \begin{cases} X^* & \text{w. pr. } \alpha(X_k, X^*) \stackrel{\text{def}}{=} 1 \wedge \frac{f(X^*)r(X_k | X^*)}{f(X_k)r(X^* | X_k)}, \\ X_k & \text{otherwise.} \end{cases}$

(Here we used the notation $a \wedge b \stackrel{\text{def}}{=} \min\{a, b\}$.) The scheme is initialized by drawing X_1 from some arbitrary initial distribution χ .

Last time: the MH algorithm: pseudo-code

```

draw  $X_1 \sim \chi$ ;
for  $i = 1 \rightarrow (N - 1)$  do
    draw  $X^* \sim r(z | X_k)$ ;
    set  $\alpha \leftarrow 1 \wedge \frac{f(X^*)r(X_k|X^*)}{f(X_k)r(X^*|X_k)}$ ;
    draw  $U \sim U(0, 1)$ ;
    if  $U \leq \alpha$  then
         $X_{k+1} \leftarrow X^*$ ;
    else
         $X_{k+1} \leftarrow X_k$ ;
    end
end
set  $\tau_N^{MCMC} \leftarrow \sum_{k=1}^N \phi(X_k)/N$ ;
return  $\tau_N^{MCMC}$ 

```

Last time: different types of proposal kernels

- There are a number of different ways of constructing the proposal kernel r .
- The three main classes are
 - **independent** proposals,
 - **symmetric** proposals, and
 - **multiplicative** proposals.

Last time: convergence of the MH algorithm

- The following results are fundamental:

Theorem (detailed balance of the MH sampler)

The MH sampler satisfies detailed balance for the target density f .

Corollary (global balance of the MH sampler)

The Markov chain generated by the MH sampler allows f as a stationary distribution.

- In addition, one may prove, under weak assumptions, that the MH algorithm is also **geometrically ergodic**, implying that it satisfies an LLN.

Outline

1 Last time: the Metropolis-Hastings (MH) algorithm

2 The Gibbs sampler (Ch. 5.4)

3 Variance of MCMC samplers

The Gibbs sampler

- In the following,
 - assume that the space X can be divided into m blocks, i.e., $x = (x^1, \dots, x^m) \in X$, where each block may be vector-valued itself.
 - assume that we want to sample a multivariate distribution f on X .
 - denote by x^k the k th component of x and by $x^{-k} = (x^\ell)_{\ell \neq k}$ the set of remaining components.
 - denote by $f_k(x^k | x^{-k}) = f(x)/ \int f(x) dx^k$ the conditional distribution of X^k given the other components $X^{-k} = x^{-k}$ and
 - assume (initially) that it is easy to simulate from $f_k(x^k | x^{-k})$ for all $k = 1, \dots, m$.

The Gibbs sampler (cont.)

- The **Gibbs sampler** simulates recursively a sequence of values (X_k) , forming a Markov chain on X , using the following mechanism.
- Given $X_k = (X_k^1, \dots, X_k^m)$,
 - draw $X_{k+1}^1 \sim f_1(x^1 | X_k^2, \dots, X_k^m)$,
 - draw $X_{k+1}^2 \sim f_2(x^2 | X_{k+1}^1, X_k^3, \dots, X_k^m)$,
 - draw $X_{k+1}^3 \sim f_3(x^3 | X_{k+1}^1, X_{k+1}^2, X_k^4, \dots, X_k^m)$,
 - ...
 - draw $X_{k+1}^m \sim f_m(x^m | X_{k+1}^1, X_{k+1}^2, \dots, X_{k+1}^{m-1})$.
- In other words, at the ℓ th round of the cycle generating X_{k+1} , the ℓ th component of X_{k+1} is updated by simulation from its conditional distribution given all other components.

Convergence of the Gibbs sampler

- As for the MH algorithm, the following holds true.

Theorem

The chain (X_k) generated by the Gibbs sampler has f as stationary distribution.

- In addition, one may prove, under weak assumptions, that the Gibbs sampler is also geometrically ergodic, implying that

$$\tau_N^{\text{MCMC}} = \frac{1}{N} \sum_{k=1}^N \phi(X_k) \rightarrow \tau \quad \text{as} \quad N \rightarrow \infty.$$

Example: a tricky bivariate distribution

- Suppose that we want to sample the distribution on $\{0, 1, 2, \dots, n\} \times (0, 1)$ given by

$$f(x, y) \propto \frac{n!}{(n-x)!x!} y^{x+\alpha-1} (1-y)^{n-x+\beta-1}.$$

which is very complex and hard to sample from.

- The conditional distributions are however simple; indeed
 - $X | Y = y \sim \text{Bin}(n, y)$,
 - $Y | X = x \sim \text{Beta}(x + \alpha, n - x + \beta)$.
- Thus, the problem of sampling $f(x, y)$ can be perfectly cast into the framework of the Gibbs sampler.

Example: a tricky bivariate distribution (cont.)

```
burn_in = 1000;
M = N + burn_in;
X = zeros(1,M);
Y = X;
X(1) = 5;
Y(1) = 0.5;
for k = 1:(M - 1),
    x = binornd(n,Y(k));
    X(k + 1) = x;
    Y(k + 1) = betarnd(x + alpha,n - x + beta);
end
```

Example: a tricky bivariate distribution (cont.)

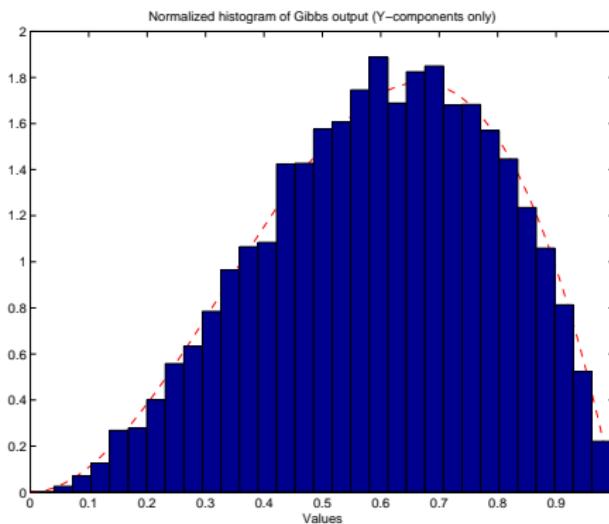


Figure: Comparison between the true density and the histogram of Y_k , $k = 1001, \dots, 11000$.

Outline

- 1 Last time: the Metropolis-Hastings (MH) algorithm
- 2 The Gibbs sampler (Ch. 5.4)
- 3 Variance of MCMC samplers

Variance of MCMC estimators

- As mentioned, the MH and Gibbs samplers are geometrically ergodic, implying an LLN for the resulting estimators. In addition, one may establish a **CLT**.
- For this purpose, let

$$r(\ell) = \lim_{n \rightarrow \infty} \mathbb{C}(\phi(X_{n+\ell}), \phi(X_n))$$

be the **covariance function** of the MCMC chain **at stationarity**.

Variance of MCMC estimators (cont.)

- The following holds true.

Theorem

For the MCMC samplers discussed above it holds that

$$\sqrt{N}(\tau_N^{MCMC} - \tau) \xrightarrow{d} N(0, \sigma^2) \quad \text{as} \quad N \rightarrow \infty,$$

where

$$\sigma^2 = r(0) + 2 \sum_{\ell=1}^{\infty} r(\ell).$$

Estimating the variance of MCMC samplers

- For i.i.d.-based Monte Carlo integration we used the sample variance (Matlab: `var`) to estimate $\mathbb{V}(\phi(X))$.
- However, now we need the entire covariance function $r(\ell)$. A number of different approximative solutions are possible, e.g.,
 - assume a **parametric form** of the covariance function, usually that of an AR process of low order, and estimate it,
 - use only samples that are **far apart**, ensuring approximate independence,
 - divide the samples into **blocks** that are large enough to be approximately independent. Then calculate averages of each block and use these to estimate the standard deviation.

Next lecture

- Block-based estimation of the MCMC asymptotic variance,
- Statistics!