Prior distributions

Computer Intensive Methods in Mathematical Statistics

Johan Westerborn

Department of mathematics KTH Royal Institute of Technology johawes@kth.se

Lecture 12 MCMC for Bayesian computation 4 May 2017

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (1

Prior distributions

Plan of today's lecture

Last Time

- 2 MCMC for Bayesian computation
- 3 Prior distributions
- 4 Interlude: Mixing of MCMC samplers

5 HA2

Johan Westerborn

Computer Intensive Methods (2)

Last Time	MCMC for Bayesian computation	Prior distributions	Interlude: Mixing of MCMC samplers	HA2

Outline

- 2 MCMC for Bayesian computation
- 3 Prior distributions
- 4 Interlude: Mixing of MCMC samplers

5 HA2

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへの

Johan Westerborn

Computer Intensive Methods (3)

Hybrid MCMC samplers

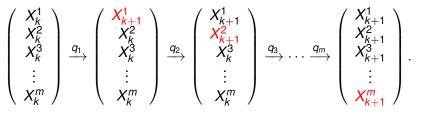
- It is often very convenient to consider hybrids between Gibbs and MH:
 - Divide the space into blocks and aim for Gibbs sampling.
 - If it is possible to sample directly from the conditional distribution of a block, update according to Gibbs.
 - If it is not, just insert a local MH step instead!
- The resulting chain satisfies still global balance and is thus a valid MCMC sampler (referred to as the hybrid sampler or Metropolis-within-Gibbs).

Hybrid MCMC samplers (cont.)

- More specifically, assume that *q*_ℓ is some Markov transition density allowing *f*_ℓ(*x*^ℓ | *x*^{-ℓ}) (i.e., the conditional density of the ℓth block) as a stationary distribution. The density *q*_ℓ may depend on *x*^{-ℓ}.
- For instance, q_{ℓ} may be an MH kernel for $f_{\ell}(x^{\ell} | x^{-\ell})$ based on some proposal density r_{ℓ} .
- In the particular case where r_ℓ is the independent proposal f_ℓ(x^ℓ | x^{-ℓ}) the acceptance probability becomes identically one, and we are back at a standard—ideal—Gibbs sub-step!

Hybrid MCMC samplers (cont.)

We may now consider the generalized Gibbs scheme with one iteration (sweep) given by



In order to show that one full iteration X_k → X_{k+1} allows f as a stationary distribution it is enough to show that each sub-step allows f as a stationary distribution (see E4, Problem 3).

MCMC for Bayesian computation

Hybrid MCMC samplers (cont.)

The ℓth sub-step follows the transition q_ℓ(x̃^ℓ | x^ℓ)δ_{x^{-ℓ}}(x̃^{-ℓ}).
 This transition density allows indeed *f* as a stationary distribution, as

$$\int f(x)q_{\ell}(\tilde{x}^{\ell} | x^{\ell})\delta_{x^{-\ell}}(\tilde{x}^{-\ell}) dx$$

$$= \int \left[\int f_{\ell}(x^{\ell} | x^{-\ell})q_{\ell}(\tilde{x}^{\ell} | x^{\ell}) dx^{\ell}\right] f(x^{-\ell})\delta_{x^{-\ell}}(\tilde{x}^{-\ell}) dx^{-\ell}$$

$$= \int f_{\ell}(\tilde{x}^{\ell} | x^{-\ell})f(x^{-\ell})\delta_{x^{-\ell}}(\tilde{x}^{-\ell}) dx^{-\ell}$$

$$= \int f(\tilde{x}^{\ell}, x^{-\ell})\delta_{x^{-\ell}}(\tilde{x}^{-\ell}) dx^{-\ell}$$

$$= f(\tilde{x}).$$

Johan Westerborn

Last time: the frequentist approach

■ Data y is viewed as an observation of a random variable Y with distribution P₀, which most often is assumed to be a member of an exponential family

$$\mathcal{P} = \{\mathbb{P}_{\theta}; \theta \in \Theta\}.$$

- Estimates $\hat{\theta}(y)$ are realizations of random variables.
- The point estimate is often equipped with a confidence bound on level, say, 95%.
- Hypothesis testing is done by rejecting a hypothesis H₀ if P(data y || H₀) is small.

KTH Royal Institute of Technology

Last time: the Bayesian approach

- The uncertainty concerning θ is modeled by viewing θ as a random variable, and inference is based completely on the posterior distribution $f(\theta \mid y)$.
- It is possible to incorporate prior information via the prior distribution f(θ).
- A 95% credible or posterior probability interval contains θ with a probability of 95% given the observations.
- Hypothesis tests are done by studying $\mathbb{P}(\mathcal{H}_0 \| \text{data } y)$.

Prior distributions

Plan of today's lecture

Last Time

- 2 MCMC for Bayesian computation
- 3 Prior distributions
- 4 Interlude: Mixing of MCMC samplers

5 HA2

Johan Westerborn

Computer Intensive Methods (10)

Last Time	MCMC for Bayesian computation	Prior distributions	Interlude: Mixing of MCMC samplers	HA2

Outline

2 MCMC for Bayesian computation

- 3 Prior distributions
- 4 Interlude: Mixing of MCMC samplers

5 HA2

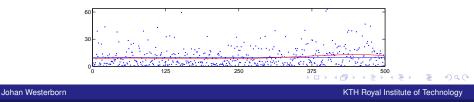
▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ● ④ ● ●

Johan Westerborn

Computer Intensive Methods (11

Example: change point detection

- We have measured the waiting times in a system and suspect that the expected waiting time changed during the monitoring period.
- The observations $(y_i)_{i=1}^n$ are assumed to follow exponential distributions with parameter θ_1 for $i \in \{1, ..., n_b\}$ and parameter θ_2 for $i \in \{n_b + 1, ..., n\}$.
- Further, we put a Gamma prior on θ_k , $\theta_k \sim \Gamma(a, b)$, with a = 40 and b = 4, and a uniform prior on n_b

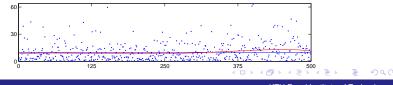


Computer Intensive Methods (12)

MCMC for Bayesian computation

Example: change point detection

- We have measured the waiting times in a system and suspect that the expected waiting time changed during the monitoring period.
- The observations $(y_i)_{i=1}^n$ are assumed to follow exponential distributions with parameter θ_1 for $i \in \{1, ..., n_b\}$ and parameter θ_2 for $i \in \{n_b + 1, ..., n\}$.
- Further, we put a Gamma prior on θ_k , $\theta_k \sim \Gamma(a, b)$, with a = 40 and b = 4, and a uniform prior on n_b



Johan Westerborn

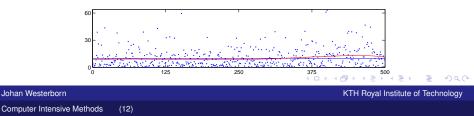
KTH Royal Institute of Technology

Computer Intensive Methods (12)

MCMC for Bayesian computation

Example: change point detection

- We have measured the waiting times in a system and suspect that the expected waiting time changed during the monitoring period.
- The observations $(y_i)_{i=1}^n$ are assumed to follow exponential distributions with parameter θ_1 for $i \in \{1, ..., n_b\}$ and parameter θ_2 for $i \in \{n_b + 1, ..., n\}$.
- Further, we put a Gamma prior on θ_k , $\theta_k \sim \Gamma(a, b)$, with a = 40 and b = 4, and a uniform prior on n_b



Last Time

MCMC for Bayesian computation

Prior distributions

Interlude: Mixing of MCMC samplers HA2

Example: change point detection (cont.)

Thus, we have unknown parameters $(\theta_1, \theta_2, n_b)$ and data $Y = (y_1, \dots, y_n)$. The posterior becomes

$$f(n_{b}, \theta_{1}, \theta_{2} | y_{1}, \dots, y_{n})$$

$$\propto f(\theta_{1})f(\theta_{2})f(n_{b})\prod_{i=1}^{n}f(y_{i} | n_{b}, \theta_{1}, \theta_{2})$$

$$= \theta_{1}^{n_{b}+a-1}\exp\left(-\theta_{1}\left(b + \sum_{i=1}^{n_{b}}y_{i}\right)\right)$$

$$\times \theta_{2}^{n-n_{b}+a-1}\exp\left(-\theta_{2}\left(b + \sum_{i=n_{b}+1}^{n}y_{i}\right)\right).$$

KTH Royal Institute of Technology

Image: A matrix

Johan Westerborn

Computer Intensive Methods (13)

- This posterior is complicated ...
- However, the conditional distributions of θ₁ and θ₂ are easily calculated according to

$$\begin{aligned} \theta_1 \mid n_{\mathsf{b}}, y_1, \dots, y_n &\sim \Gamma\left(n_{\mathsf{b}} + a, b + \sum_{i=1}^{n_{\mathsf{b}}} y_i\right), \\ \theta_2 \mid n_{\mathsf{b}}, y_1, \dots, y_n &\sim \Gamma\left(n - n_{\mathsf{b}} + a, b + \sum_{i=n_{\mathsf{b}}+1}^n y_i\right). \end{aligned}$$

The conditional distribution of n_b is however more complicated. Thus, we draw n_b by inserting an MH step in the Gibbs sampler, yielding a hybrid sampler.

Johan Westerborn

Computer Intensive Methods (14)

- This posterior is complicated ...
- However, the conditional distributions of θ₁ and θ₂ are easily calculated according to

$$\begin{aligned} \theta_1 \mid n_{\mathsf{b}}, y_1, \dots, y_n &\sim \Gamma\left(n_{\mathsf{b}} + a, b + \sum_{i=1}^{n_{\mathsf{b}}} y_i\right), \\ \theta_2 \mid n_{\mathsf{b}}, y_1, \dots, y_n &\sim \Gamma\left(n - n_{\mathsf{b}} + a, b + \sum_{i=n_{\mathsf{b}}+1}^n y_i\right). \end{aligned}$$

The conditional distribution of n_b is however more complicated. Thus, we draw n_b by inserting an MH step in the Gibbs sampler, yielding a hybrid sampler.

- The MH step is as follows.
- Given n_b, we propose a candidate n^{*}_b uniformly on the integers {n_b R,..., n_b,..., n_b + R}, for some R. This forms a symmetric proposal on {1,..., n}.

Thus, the acceptance probability for the MH step becomes

$$\begin{aligned} &\alpha(n_{\rm b}, n_{\rm b}^{*}) \\ &= 1 \wedge \frac{\theta_{1}^{n_{\rm b}^{*}} \theta_{2}^{-n_{\rm b}^{*}} \exp(-\theta_{1} \sum_{i=1}^{n_{\rm b}^{*}} y_{i}) \exp(-\theta_{2} \sum_{i=n_{\rm b}^{*}+1}^{n} y_{i})}{\theta_{1}^{n_{\rm b}} \theta_{2}^{-n_{\rm b}} \exp(-\theta_{1} \sum_{i=1}^{n} y_{i}) \exp(-\theta_{2} \sum_{i=n_{\rm b}+1}^{n} y_{i})}. \end{aligned}$$

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (15)

- The MH step is as follows.
- Given n_b, we propose a candidate n^{*}_b uniformly on the integers {n_b R,..., n_b,..., n_b + R}, for some R. This forms a symmetric proposal on {1,..., n}.

Thus, the acceptance probability for the MH step becomes

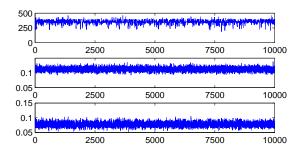
$$\alpha(n_{\rm b}, n_{\rm b}^{*}) = 1 \wedge \frac{\theta_{1}^{n_{\rm b}^{*}} \theta_{2}^{-n_{\rm b}^{*}} \exp(-\theta_{1} \sum_{i=1}^{n_{\rm b}^{*}} y_{i}) \exp(-\theta_{2} \sum_{i=n_{\rm b}^{*}+1}^{n} y_{i})}{\theta_{1}^{n_{\rm b}} \theta_{2}^{-n_{\rm b}} \exp(-\theta_{1} \sum_{i=1}^{n_{\rm b}} y_{i}) \exp(-\theta_{2} \sum_{i=n_{\rm b}+1}^{n} y_{i})}.$$

Johan Westerborn

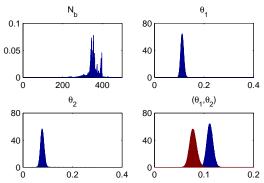
Prior distributions

Example: change point detection (cont.)

Running this Gibbs sampler with R = 75 gives an acceptance rate of 33%.



The resulting histograms of the parameters are as follows:



KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (17)

Last Time	MCMC for Bayesian computation	Prior distributions	Interlude: Mixing of MCMC samplers	HA2

Outline

1 Last Time

- 2 MCMC for Bayesian computation
- 3 Prior distributions
- 4 Interlude: Mixing of MCMC samplers

5 HA2

Johan Westerborn

Computer Intensive Methods (18)

KTH Royal Institute of Technology

• E •

< 口 > < 🗗

Last Time	MCMC for Bayesian computation	Prior distributions ●○○○	Interlude: Mixing of MCMC samplers	HA2

Selecting priors

Recall that the posterior is computed via Bayes's formula

$$f(\theta \mid y) = rac{f(y \mid heta)f(heta)}{\int f(y \mid heta')f(heta') \, d heta'} \propto f(y \mid heta)f(heta).$$

- In Bayesian modeling there is always an interplay between the prior and the data:
 - The posterior is drawn away from the data towards the prior. How far depends on the strength of the prior.
 - However, enough data will most likely overwhelm the prior.

Image: A matrix

KTH Royal Institute of Technology

Two common prior-types are

conjugate priors.

improper (flat) priors.

Johan Westerborn

Computer Intensive Methods (19)

Last Time	MCMC for Bayesian computation	Prior distributions ●○○○	Interlude: Mixing of MCMC samplers	HA2

Selecting priors

Recall that the posterior is computed via Bayes's formula

$$f(\theta \mid y) = rac{f(y \mid heta)f(heta)}{\int f(y \mid heta')f(heta') \, d heta'} \propto f(y \mid heta)f(heta).$$

- In Bayesian modeling there is always an interplay between the prior and the data:
 - The posterior is drawn away from the data towards the prior. How far depends on the strength of the prior.
 - However, enough data will most likely overwhelm the prior.
- Two common prior-types are
 - conjugate priors.
 - improper (flat) priors.

Conjugate priors

Conjugate priors

- are such that the prior and the posterior belong to the same distribution class for a given likelihood.
- allow for straightforward theoretical calculations and Gibbs sampling.
- are sometimes criticized since we select priors for ease of calculation.
- may be hard to derive for complex models.

Johan Westerborn

Computer Intensive Methods (20)

Last Time	MCMC for Bayesian computation	Prior distributions	Interlude: Mixing of MCMC samplers	HA2

Conjugate priors

Conjugate priors for θ for some common likelihoods. All parameters except θ are assumed fixed and known and data (y_i)ⁿ_{i=1} are assumed to be conditionally independent given θ.

Likelihood	Prior	Posterior
$Bin(n, \theta)$	$Beta(\alpha,\beta)$	$Beta(\alpha + y, \beta + n - y)$
$Ge(\theta)$	$Beta(\alpha,\beta)$	Beta $(\alpha + n, \beta + \sum_{i=1}^{n} y_i - n)$
NegBin (n, θ)	$Beta(\alpha,\beta)$	$Beta(\alpha + n, \beta + y - n)$
$\Gamma(k,\theta)$	$\Gamma(\alpha,\beta)$	$\Gamma(\alpha + nk, \beta + \sum_{i=1}^{n} y_i)$
$Po(\theta)$	$\Gamma(lpha, eta)$	$\Gamma(\alpha + \sum_{i=1}^{n} y_i, \beta + n)$
$N(\mu, \theta^{-1})$	$\Gamma(lpha,eta)$	$\Gamma\left(\alpha+\frac{n}{2},\beta+\frac{1}{2}\sum_{i=1}^{n}(y_i-\mu)^2\right)$
$N(\theta, \sigma^2)$	N(<i>m</i> , <i>s</i> ²)	$\left[N\left(\frac{m/s^{2}+n\bar{y}/\sigma^{2}}{1/s^{2}+n/\sigma^{2}},\frac{1}{1/s^{2}+n/\sigma^{2}}\right) \right]$

Improper priors

- Improper, or flat, priors are used when prior information is deficient.
- For instance, if $\theta \in \mathbb{R}$, $f(\theta) \propto 1$ is an improper prior since it is not integrable; however, we allow this as long as the posterior is a well-defined density.
- For instance, let *y* be an observation from *Y* ~ N(θ, 1), where θ ∈ ℝ. Since we do not have any prior information concerning θ we put *f*(θ) ∝ 1 for all θ ∈ ℝ. After this we proceed, formally, like

$$f(\theta \mid y) = \frac{f(y \mid \theta)f(\theta)}{\int f(y \mid \theta')f(\theta') d\theta'} = \frac{N(y; \theta, 1) \cdot 1}{\int N(y; \theta', 1) \cdot 1 d\theta'}$$

$$\stackrel{\text{symm.}}{=} \frac{N(\theta; y, 1) \cdot 1}{\int N(\theta'; y, 1) \cdot 1 d\theta'} = N(\theta; y, 1).$$

Johan Westerborn

KTH Royal Institute of Technology

Computer Intensive Methods (22)

Last Time	MCMC for Bayesian computation	Prior distributions	Interlude: M

Outline

1 Last Time

- 2 MCMC for Bayesian computation
- 3 Prior distributions
- 4 Interlude: Mixing of MCMC samplers

5 HA2

Johan Westerborn

Mixing of MCMC samplers

• We recall that the asymptotic variance of τ_{N}^{MCMC} is given by

$$\sigma^2 = r(0) + 2\sum_{\ell=1}^{\infty} r(\ell)$$
 with $r(\ell) = \lim_{n \to \infty} \mathbb{C}(\phi(X_{n+\ell}), \phi(X_n)).$

- Consequently, in order to obtain a low variance of τ_N^{MCMC} , the covariance function $r(\ell)$ should decrease rapidly with ℓ .
- For geometrically ergodic chains $r(\ell)$ tends to zero geometrically fast.
- The speed of which $r(\ell)$ tends to zero is typically described using the term "mixing".
 - Strong mixing = fast forgetting = rapidly decreasing $r(\ell)$.
 - Bad mixing = slow forgetting = slowly decreasing $r(\ell)$.

Why is good mixing important?

- Bad choices of proposal distributions may lead to bad mixing, which causes problems for the MCMC algorithm in the sense that it may
 - need a very long time to converge.
 - exhibit high autocorrelation, implying high variance and the need of a large MC sample size to ensure good estimates.

KTH Royal Institute of Technology

Optimal mixing for the MH algorithm

- When designing a random walk proposal, $X_k^* = X_k + \varepsilon$ with $\varepsilon \sim N(0, s\Sigma)$, two things effect the acceptance rate:
 - how well Σ captures the dependence structure of the target distribution,
 - 2 how appropriate the scaling s > 0 is.
- One way to obtain a covariance matrix Σ that captures well the dependence structure of the target distribution f(x) is to let

$$\boldsymbol{\Sigma}_{ij} = \frac{2.38}{d} \left(-\frac{\partial^2 \log f(x)}{\partial x_i \partial x_j} \bigg|_{x=x_{\text{mode}}} \right)^{-1}$$

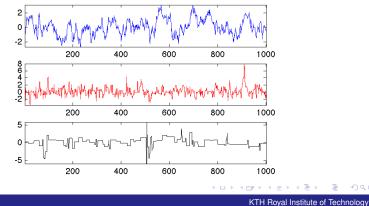
Rule of thumb: a good acceptance rate is around 30% (23%-44%)!

Johan Westerborn

KTH Royal Institute of Technology

Mixing—Random walk proposal

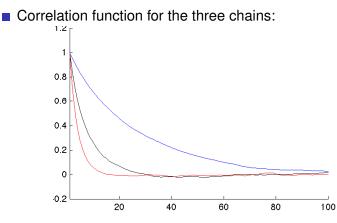
Using symmetric normal proposal with three different values for s (small, medium, large, respectively) yields typically trajectories of the following form:



Johan Westerborn

Computer Intensive Methods (27)

Mixing—Random walk proposal



KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (28)

Last Time	MCMC for Bayesian computation	Prior distributions	Interlude: Mixing of MCMC samplers	HA2
	000000	0000	00000	

Outline

1 Last Time

- 2 MCMC for Bayesian computation
- 3 Prior distributions
- 4 Interlude: Mixing of MCMC samplers

5 HA2

▲ロ ト ▲ 部 ト ▲ 語 ト ▲ 語 ト 語 少 へ (
KTH Royal Institute of Technology)

Johan Westerborn

Computer Intensive Methods (29)

HA2: MCMC and bootstrap

HA2 comprises

- one problem aiming at detecting change points in cole mine data using hybrid MCMC samplers and
- one problem aiming at estimating the 100-year north Atlantic wave using parametric bootstrap (to be discussed).
- Submission:
 - A written report in PDF format.
 - An email containing all your m-files. With a file that runs your analysis.
 - Follow the same instructions as for HA1.
 - Deadline: Thursday 18 May, 13:00:00.