Computer Intensive Methods in Mathematical Statistics

Johan Westerborn

Department of mathematics KTH Royal Institute of Technology johawes@kth.se

Lecture 14
More on the bootstrap
11 May 2017

Plan of today's lecture

- 1 Last time: Introduction to bootstrap (Ch. 7)
- 2 More on the bootstrap (Ch. 7)
 - Example: law schools
 - Parametric bootstrap
 - Semi-parametric bootstrap
- 3 MC methods for hypothesis testing (Ch. 8)
 - Preliminaries
 - MC tests
 - Permutation tests

(2)

Outline

- 1 Last time: Introduction to bootstrap (Ch. 7)
- 2 More on the bootstrap (Ch. 7)
 - Example: law schools
 - Parametric bootstrap
 - Semi-parametric bootstrap
- MC methods for hypothesis testing (Ch. 8)
 - Preliminaries
 - MC tests
 - Permutation tests

(3)

Statistical problem under consideration

- We assume that we have at hand
 - observations y
 - lacksquare and a (possibly parametric) model ${\mathcal P}$ for the data.
- In this setting we want to make inference about some property (estimand) $\tau = \tau(\mathbb{P}_0)$ of the distribution \mathbb{P}_0 that generated the data.
- For instance,

$$au(\mathbb{P}_0) = \mathbb{E}_{\mathbb{P}_0}(Y) = \int x f_0(x) \, dx, \quad ext{(mean)}$$

where f_0 is the density of \mathbb{P}_0 .

(4)

■ The estimand τ is estimated using a statistic t(y).

Statistical problem under consideration

- We assume that we have at hand
 - observations y
 - lacksquare and a (possibly parametric) model ${\mathcal P}$ for the data.
- In this setting we want to make inference about some property (estimand) $\tau = \tau(\mathbb{P}_0)$ of the distribution \mathbb{P}_0 that generated the data.
- For instance,

$$au(\mathbb{P}_0) = \mathbb{E}_{\mathbb{P}_0}(Y) = \int x f_0(x) dx$$
, (mean)

where f_0 is the density of \mathbb{P}_0 .

(4)

■ The estimand τ is estimated using a statistic t(y).

Statistical problem under consideration

- We assume that we have at hand
 - observations y
 - lacksquare and a (possibly parametric) model ${\mathcal P}$ for the data.
- In this setting we want to make inference about some property (estimand) $\tau = \tau(\mathbb{P}_0)$ of the distribution \mathbb{P}_0 that generated the data.
- For instance,

$$au(\mathbb{P}_0) = \mathbb{E}_{\mathbb{P}_0}(Y) = \int x \mathit{f}_0(x) \, dx, \quad ext{(mean)}$$

where f_0 is the density of \mathbb{P}_0 .

(4)

■ The estimand τ is estimated using a statistic t(y).

Uncertainty of estimators

- It is important to always keep in mind that the estimate t(y) is an observation of a random variable t(Y). If the experiment was repeated, resulting in a new vector y of random observations, the estimator would take another value.
- In the same way, the error $\Delta(y) = t(y) \tau$ is a realization of the random variable $\Delta(Y) = t(Y) \tau$.
- To assess the uncertainty of the estimator we thus need to analyze the distribution of the error $\Delta(Y)$ (error distribution).

(5)

Bootstrap in a nutshell

- Using the bootstrap algorithm we deal with this matter by
 - 11 replacing \mathbb{P}_0 by an data-based approximation $\widehat{\mathbb{P}}_0$ and
 - 2 analyzing the variation of $\Delta(Y)$ by MC simulation from the approximation $\widehat{\mathbb{P}}_0$.
- A generic way to obtain the approximation $\widehat{\mathbb{P}}_0$ is to use the empirical distribution.

(6)

The empirical distribution (ED)

- The empirical distribution (ED) $\widehat{\mathbb{P}}_0$ associated with the data $y = (y_1, y_2, \dots, y_n)$ gives equal weight (1/n) to each of the y_i s (assuming that all the y values are distinct).
- Consequently, if $Z \sim \mathbb{P}_0$ is a random variable, then Z takes the value y_i with probability 1/n.
- The empirical distribution function (EDF) associated with the data *y* is defined by

$$\widehat{F}_n(z) = \widehat{\mathbb{P}}_0(Z \le z)$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{y_i \le z\}} = \text{fraction of } y_i \text{'s that are less than } z.$$

(7)

The empirical distribution (ED)

- The empirical distribution (ED) $\widehat{\mathbb{P}}_0$ associated with the data $y = (y_1, y_2, \dots, y_n)$ gives equal weight (1/n) to each of the y_i s (assuming that all the y values are distinct).
- Consequently, if $Z \sim \widehat{\mathbb{P}}_0$ is a random variable, then Z takes the value y_i with probability 1/n.
- The empirical distribution function (EDF) associated with the data *y* is defined by

$$\widehat{F}_n(z) = \widehat{\mathbb{P}}_0(Z \le z)$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{y_i \le z\}} = \text{fraction of } y_i \text{'s that are less than } z.$$

(7)

The empirical distribution (ED)

- The empirical distribution (ED) $\widehat{\mathbb{P}}_0$ associated with the data $y = (y_1, y_2, \dots, y_n)$ gives equal weight (1/n) to each of the y_i s (assuming that all the y values are distinct).
- Consequently, if $Z \sim \widehat{\mathbb{P}}_0$ is a random variable, then Z takes the value y_i with probability 1/n.
- The empirical distribution function (EDF) associated with the data *y* is defined by

$$\widehat{F}_n(z) = \widehat{\mathbb{P}}_0(Z \le z)$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{y_i \le z\}} = \text{fraction of } y_i \text{'s that are less than } z.$$

(7)

Properties of the EDF

It holds that

$$\lim_{z \to -\infty} \widehat{F}_n(z) = \lim_{z \to -\infty} F(z) = 0,$$
$$\lim_{z \to \infty} \widehat{F}_n(z) = \lim_{z \to \infty} F(z) = 1.$$

- In addition, $n\widehat{F}_n(z) \sim \text{Bin}(n, F(z))$.
- By the LLN (as $n \to \infty$),

$$\widehat{F}_n(z) \to F(z)$$
 (a.s.)

and by the CLT,

$$\sqrt{n}(\widehat{F}_n(z) - F(z)) \stackrel{d.}{\longrightarrow} N(0, \sigma^2(z)),$$

where

$$\sigma^2(z) = F(z)(1 - F(z)).$$

Generating samples from the ED

- Consequently a sample Y^* of size n from the empirical distribution $\widehat{\mathbb{P}}_0$ associated with the observations $y = (y_1, y_2, \dots, y_n)$ is generated by
 - drawing indices $I_1, I_2, ..., I_n$ independently from the uniform distribution on the integers $\{1, 2, ..., n\}$, and
 - 2 letting $Y^* = (y_{l_1}, y_{l_2}, \dots, y_{l_n}).$

(9)

Note that this algorithm simply draws n values from the set $\{y_1, y_2, \dots, y_n\}$ with replacement.

The bootstrap

- Having access to data y, we may now replace \mathbb{P}_0 by $\widehat{\mathbb{P}}_0$.
- Any quantity involving \mathbb{P}_0 can now be approximated by plugging $\widehat{\mathbb{P}}_0$ into the quantity instead. In particular,

$$\tau = \tau(\mathbb{P}_0) \approx \widehat{\tau} = \tau(\widehat{\mathbb{P}}_0),$$

which, e.g., in the case of the mean, becomes

$$au = \mathbb{E}_{\mathbb{P}_0}(Y) \approx \widehat{\tau} = \mathbb{E}_{\widehat{\mathbb{P}}_0}(Y) = \frac{1}{n} \sum_{i=1}^n y_i.$$

(10)

The bootstrap (cont.)

- Moreover, the uncertainty of t(y) can be analyzed by drawing repeatedly $Y^* \sim \widehat{\mathbb{P}}_0$ and look at the variation (histogram) of $\Delta(Y^*) = t(Y^*) \tau \approx t(Y^*) \widehat{\tau}$.
- In the case of the empirical distribution, simulation from $\widehat{\mathbb{P}}_0$ is carried through by simply drawing, with replacement, among the values y_1, \ldots, y_n .

The bootstrap: algorithm

- Construct the ED $\widehat{\mathbb{P}}_0$ from the data y.
- Simulate B new data sets Y_b^* , $b \in \{1, 2, ..., B\}$, where each Y_b^* has the size of y, from $\widehat{\mathbb{P}}_0$. Each Y_b^* is obtained by drawing, with replacement, n times among the y_i s.
- Compute the values $t(Y_b^*)$, $b \in \{1, 2, ..., B\}$, of the estimator.
- By setting in turn $\Delta_b^* = t(Y_b^*) \hat{\tau}$, $b \in \{1, 2, ..., B\}$, we obtain values being approximately distributed according to the error distribution. These can be used for uncertainty analysis.

(12)

Etymology

Figure: The Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own bootstraps. — "The Surprising Adventures of Baron Munchausen" by Rudolph Eric

(13)

Bootstrap confidence bounds

(14)

Recall that a confidence bound for τ on the level 1 $-\alpha$ is given by

$$I_{\alpha} = \left(\widehat{\tau} - F_{\Delta}^{-1}(1 - \alpha/2), \widehat{\tau} - F_{\Delta}^{-1}(\alpha/2)\right),$$

where F_{Δ} is the error distribution function.

■ Having bootstrapped errors $(\Delta_b^*)_{b=1}^B$ being approximately distributed according to F_{Δ} , we may use the approximation

$$F_{\Delta}^{-1}(p) pprox \Delta_{(\lceil Bp \rceil)}^*, \quad p \in (0,1),$$

where $(\Delta_{(1)}^*, \dots, \Delta_{(B)}^*)$ are the ordered errors.

Bootstrap confidence bounds (cont.)

■ This gives the bootstrap confidence bound

$$I_{\alpha} = \left(\widehat{\tau} - \Delta^*_{(\lceil B(1-\alpha/2)\rceil)}, \widehat{\tau} - \Delta^*_{(\lceil B\alpha/2\rceil)}\right),$$

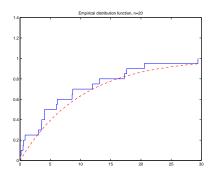
for τ on the level $1 - \alpha$.

(15)

■ One-sided intervals are obtained analogously (just let $\alpha/2 \leftarrow \alpha$).

A toy example

■ We let $y = (y_1, ..., y_{20})$ be i.i.d. with unknown mean θ (and unknown distribution). As estimator we take, as usual, $t(y) = \bar{y}$.



(16)

A toy example: MATLAB implementation

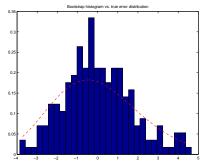
■ In MATLAB:

```
n = 20;
B = 200;
tau_hat = mean(y);
boot = zeros(1,B);
for b = 1:B, % bootstrap
    I = randsample(n,n,'true',ones(1,n));
    boot(b) = mean(y(I));
end
delta = sort(boot - tau_hat);
alpha = 0.05; % CB level
L = tau_hat - delta(ceil((1 - alpha/2)*B));
U = tau_hat - delta(ceil(alpha*B/2));
```

(17)

A toy example: exponential distribution

■ This histogram of $(\Delta_b^*)_{b=1}^{200}$ looks like follows:



■ The associated confidence bound is (in fact, the y_i s were observations of $Y_i \sim \text{Exp}(\theta)$, simulated under $\theta_0 = 10$)

$$I_{.05} = (7.3, 15.7).$$

(18)

Outline

- Last time: Introduction to bootstrap (Ch. 7
- 2 More on the bootstrap (Ch. 7)
 - Example: law schools
 - Parametric bootstrap
 - Semi-parametric bootstrap
- MC methods for hypothesis testing (Ch. 8)
 - Preliminaries
 - MC tests
 - Permutation tests

(19)

Non-parametric Bootstrap

- The bootstrap algorithm considered above is non-parametric in the sense that we have no assumptions on the distribution \mathbb{P}_0 apart from the samples being i.i.d.; in particular, we do not assume that \mathbb{P}_0 belongs to a certain parametric family.
- Our approximation \mathbb{P}_0 of \mathbb{P}_0 is the empirical distribution function.
- The simulation step boils down to drawing from the empirical distribution, i.e., drawing from the data with replacement.

(20)

Non-parametric Bootstrap

- The bootstrap algorithm considered above is non-parametric in the sense that we have no assumptions on the distribution \mathbb{P}_0 apart from the samples being i.i.d.; in particular, we do not assume that \mathbb{P}_0 belongs to a certain parametric family.
- Our approximation $\widehat{\mathbb{P}}_0$ of \mathbb{P}_0 is the empirical distribution function.
- The simulation step boils down to drawing from the empirical distribution, i.e., drawing from the data with replacement.

(20)

Non-parametric Bootstrap

- The bootstrap algorithm considered above is non-parametric in the sense that we have no assumptions on the distribution \mathbb{P}_0 apart from the samples being i.i.d.; in particular, we do not assume that \mathbb{P}_0 belongs to a certain parametric family.
- Our approximation $\widehat{\mathbb{P}}_0$ of \mathbb{P}_0 is the empirical distribution function.
- The simulation step boils down to drawing from the empirical distribution, i.e., drawing from the data with replacement.

(20)

Outline

- 1 Last time: Introduction to bootstrap (Ch. 7)
- 2 More on the bootstrap (Ch. 7)
 - Example: law schools
 - Parametric bootstrap
 - Semi-parametric bootstrap
- MC methods for hypothesis testing (Ch. 8)
 - Preliminaries
 - MC tests
 - Permutation tests

(21)

Example: law schools

Example: law schools

- We have average test scores (LSAT and GPA) from 15 american law schools and want to investigate if the two scores are correlated, i.e. τ is the correlation between the two datasets.
- Our data consists of pairs $(x, y) = ((x_1, y_1), \dots, (x_{15}, y_{15})).$
- When estimating the correlation we take a nonparametric approach as follows.

(22)

Example: law schools (cont.)

(23)

Estimate the correlation of the data using the sample correlation

$$\widehat{\tau} = t(x,y) = \frac{n\sum_i x_i y_i - \sum_i x_i \sum_i y_i}{\sqrt{n\sum_i x_i^2 - (\sum_i x_i)^2}} \approx 0.776.$$

- 2 Create bootstrap samples $(X, Y)_b^*$, $b \in \{1, 2, ..., B\}$, where each sample $(X, Y)_b^*$ is generated by drawing 15 times with replacement from the pairs (x_i, y_i) , $i \in \{1, ..., 15\}$.
- 3 Calculate the correlation $t((X, Y)_b^*)$ for each random sample.

Example: law schools

Example: law schools (cont.)

- Given the $(X, Y)_b^*$ s we create variables $\Delta_b^* = t((X, Y)_b^*) \widehat{\tau}, b \in \{1, 2, ..., B\}$, being approximately distributed according to the error distribution.
- This gives that the bias of our estimate is approximately $\mathbb{E}(\Delta(X,Y)) \approx \overline{\Delta^*} = -0.0057$.
- The bias-corrected estimate is $t(x, y) \overline{\Delta^*} = 0.783$.
- A one-sided 95%-confidence interval for the correlation is, consequently,

$$I_{0.05} = \left(\widehat{\tau} - F_{\Delta}^{-1}(0.95), 1\right)$$

$$\approx \left(\widehat{\tau} - \Delta_{(\lceil 0.95B \rceil)}^*, 1\right)$$

$$= (0.614, 1).$$

Outline

- 1 Last time: Introduction to bootstrap (Ch. 7)
- 2 More on the bootstrap (Ch. 7)
 - Example: law schools
 - Parametric bootstrap
 - Semi-parametric bootstrap
- MC methods for hypothesis testing (Ch. 8)
 - Preliminaries
 - MC tests
 - Permutation tests

(25)

Parametric bootstrap

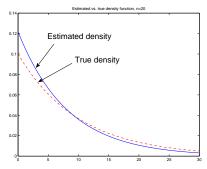
- In the non-parametric bootstrap we had no assumptions on the distribution function apart from the observed data y being i.i.d.
- In the parametric bootstrap we assume that data comes from a distribution $\mathbb{P}_0 = \mathbb{P}_{\theta_0} \in \{\mathbb{P}_{\theta}; \theta \in \Theta\}$ belonging to some parametric family.
- Instead of using the ED, we find an estimate $\widehat{\theta} = \widehat{\theta}(y)$ of θ_0 from our observations and
 - 1 generate new bootstrapped samples Y_b^* , $b \in \{1, 2, ... B\}$, from $\widehat{\mathbb{P}}_0 = \mathbb{P}_{\widehat{\theta}}$.
 - 2 After this, we form, as usual, bootstrap estimates $\widehat{\theta}(Y_b^*)$ and errors $\Delta_b^* = \widehat{\theta}(Y_b^*) \widehat{\theta}$, $b \in \{1, 2, ..., B\}$.

(26)

Parametric bootstrap

A toy example: exponential distribution

■ We let $y = (y_1, ..., y_{20})$ be i.i.d. observations of $Y_i \sim \text{Exp}(\theta_0)$, with unknown mean θ_0 . The MLE of θ_0 is $\widehat{\theta}(y) = \overline{y}$ and following plot displays $\text{Exp}(\widehat{\theta}(y))$ vs. $\text{Exp}(\theta_0)$.



(27)

A toy example: exponential distribution (cont.)

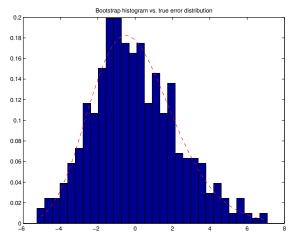
In Matlab:

```
n = 20;
B = 500;
theta_hat = mean(y);
boot = zeros(1,B);
for b = 1:B, % bootstrap
    y_boot = exprnd(theta_hat,1,n);
    boot(b) = mean(y_boot);
end
delta = sort(boot - theta_hat);
alpha = 0.05; % CB level
L = theta_hat - delta(ceil((1 - alpha/2)*B));
U = theta_hat - delta(ceil(alpha*B/2));
```

(28)

Parametric bootstrap

A toy example: exponential distribution (cont.)



(29)

Outline

- 1 Last time: Introduction to bootstrap (Ch. 7)
- 2 More on the bootstrap (Ch. 7)
 - Example: law schools
 - Parametric bootstrap
 - Semi-parametric bootstrap
- MC methods for hypothesis testing (Ch. 8)
 - Preliminaries
 - MC tests
 - Permutation tests

(30)

Semi-parametric bootstrap: regression

We assume a parametric model for the data, for instance

$$Y_i = kx_i + m + \varepsilon_i, \quad i \in \{1, 2, \dots n\},$$

and a non-parametric model for the residuals ε_i .

- Our only assumption on the residuals are that these are i.i.d.
- Given data $y = (y_1, \dots, y_n)$ we want construct estimators $\hat{k}(y)$ and $\hat{m}(y)$ of the parameters k and m and assess the uncertainty of the same.

(31)

Semi-parametric bootstrap: regression (cont)

- To do this we want to generate bootstrap samples Y_b^* and parameter estimates $\hat{k}(Y_b^*)$ and $\hat{m}(Y_b^*)$ and study the variation of, e.g., $\Delta_b^* = \hat{k}(Y_b^*) \hat{k}(y)$.
- A confidence interval for k is then given by

$$\left(\widehat{k}(y) - \Delta^*_{(\lceil B(1-\alpha/2)\rceil)}, \widehat{k}(y) - \Delta^*_{(\lceil B\alpha/2\rceil)}\right).$$

Bootstrap samples Y_b* are obtained by bootstrapping the residuals and adding these to the line. We proceed as follows.

(32)

Semi-parametric bootstrap

Semi-parametric bootstrap: regression (cont.)

- Find estimators $\hat{k} = \hat{k}(y) = S_{xy}/S_{xx}$ and $\hat{m} = \hat{m}(y) = \bar{y} \hat{k}\bar{x}$ for the parameters using least squares.
- Estimate the residuals as

(33)

$$\widehat{\varepsilon}_i = y_i - \widehat{k}x_i - \widehat{m}, \quad i \in \{1, 2, \dots, n\}.$$

- Now, the $\hat{\epsilon}_i$'s approximately form an i.i.d. sample from an unknown distribution. Hence, for b = 1, 2, ..., B,
 - (i) generate, by resampling, $\epsilon_b^* = (\epsilon_1, \dots \epsilon_n)_b^*$ and
 - (ii) use the bootstrapped residuals to generate bootstrapped observations

$$(Y_i)_b^* = \widehat{k}x_i + \widehat{m} + (\epsilon_i)_b^*.$$

(iii) Given the bootstrapped observations, estimate the parameters to obtain $\hat{k}(Y_h^*)$ and $\hat{m}(Y_h^*)$.

Example: Gaussian residuals

(34)

- Assume that $Y_i = kx_i + m + \varepsilon_i$, with standard Gaussian residuals.
- To test the semi-parametric bootstrap we simulate a data set with m = 3 and k = 4.
- Given data, the parameters are estimated using least squares estimation.
- For comparison, we know from the theory of linear regression that an exact confidence interval for k is

$$I_{\alpha} = \left(\widehat{k} - t_{\alpha/2}(n-2)s_b, \widehat{k} + t_{\alpha/2}(n-2)s_b\right),$$

where

$$s_b^2 = \frac{\frac{1}{n-2}\sum_i \widehat{\epsilon}_i^2}{\sum_i (x_i - \bar{x})^2}.$$

Semi-parametric bootstrap

Example: Gaussian residuals (cont.)

Applying this to the given data set yields the exact bound

$$I_{0.05} = (3.84, 4.79)$$
.

- For a comparison we applied semi-parametric as well as parametric bootstrap to the same data set.
 - Using semi-parametric bootstrap, where we resample the estimated residuals as above, we obtain the interval

$$I_{0.05} = (3.85, 4.78)$$
.

■ Instead using parametric bootstrap, where we draw new residuals from $N(0, \hat{\sigma}^2)$, we obtain

$$I_{0.05} = (3.86, 4.77)$$
.

(35)

Summary: Different types of bootstrap

- Non-parametric bootstrap
 - makes no assumptions on the distribution apart from i.i.d.
 - needs more data than parametric.
- Parametric bootstrap
 - assumes that data comes from a parametric family of distributions.
 - needs less data to obtain good estimates due to stronger assumptions.
 - may however be sensitive to assumptions.
- Semi-parametric bootstrap

(36)

- assumes a parametric model, coupled with non-parametric nuisance variables, often residuals.
- is typically used for regression.

- 1 Last time: Introduction to bootstrap (Ch. 7
- 2 More on the bootstrap (Ch. 7)
 - Example: law schools
 - Parametric bootstrap
 - Semi-parametric bootstrap
- MC methods for hypothesis testing (Ch. 8)
 - Preliminaries
 - MC tests
 - Permutation tests

(37)

- 1 Last time: Introduction to bootstrap (Ch. 7)
- 2 More on the bootstrap (Ch. 7)
 - Example: law schools
 - Parametric bootstrap
 - Semi-parametric bootstrap
- MC methods for hypothesis testing (Ch. 8)
 - Preliminaries
 - MC tests
 - Permutation tests

(38)

Preliminaries

Statistical hypotheses

- A statistical hypothesis is a statement about the distributional properties of data.
- The goal of a hypothesis test is to see if data agrees with the statistical hypothesis.
- Rejection of a hypothesis indicates that there is sufficient evidence in the data to make the hypothesis unlikely.
- Strictly speaking, a hypothesis test does not accept a hypothesis; it fails to reject it.

(39)

Preliminaries

Testing hypotheses

- The basis of a hypothesis test consist of
 - \blacksquare a null hypothesis \mathcal{H}_0 that we wish to test.
 - **a test statistic** t(y), i.e., a function of the observed data y.
 - a critical region R.

(40)

If the test statistic falls into the critical region, then we reject the null hypothesis \mathcal{H}_0 .

Important concepts

Significance The probability (risk) that the test incorrectly rejects the null hypothesis.

Power The probability that the test rejects correctly the null hypothesis. Is a function of the true parameter.

p-value The probability, given the null hypothesis, of observing a result at least as extreme as the test statistic.

Type I error Incorrectly rejecting the null hypothesis.

Type II error Failing to reject the null hypothesis.

(41)

Testing simple hypotheses

Last time: Introduction to bootstrap (Ch. 7)

- A simple hypothesis specifies completely a single distribution for the data, e.g., $Y \sim N(\theta, 1)$ with $\mathcal{H}_0 : \theta = 0$.
- We construct/define a test statistic t(y) such that large values of t(y) indicate evidence against \mathcal{H}_0 .
- The *p*-value of the test is now $p(y) = \mathbb{P}(t(Y) \ge t(y) || \mathcal{H}_0)$.
- The rejection region is $R = \{y : p(y) \le \alpha\}$, where α is the level of the test.
- Thus, to evaluate the p-value we need to be able to compute probabilities under the distribution of t(Y) under \mathcal{H}_0 .
- This can be tricky if this distribution is complex. Use MC!

(42)

- - Example: law schools
 - Parametric bootstrap
 - Semi-parametric bootstrap
- 3 MC methods for hypothesis testing (Ch. 8)
 - Preliminaries
 - MC tests

(43)

MC tests

MC test of a simple hypothesis

- An MC-based algorithm for testing simple hypotheses goes as follows:
 - Draw *N* samples, Y_1, \ldots, Y_N , from the distribution specified by \mathcal{H}_0 .
 - 2 Calculate the test statistic $t_i = t(Y_i)$ for each sample.
 - 3 Estimate the *p*-value using MC integration by letting

$$\widehat{\rho}(y) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{\{t_i \geq t(y)\}}.$$

4 If $\widehat{p}(y) \leq \alpha$, reject \mathcal{H}_0 .

(44)

- 1 Last time: Introduction to bootstrap (Ch. 7)
- 2 More on the bootstrap (Ch. 7)
 - Example: law schools
 - Parametric bootstrap
 - Semi-parametric bootstrap
- MC methods for hypothesis testing (Ch. 8)
 - Preliminaries
 - MC tests
 - Permutation tests

(45)

Permutation tests

- The random variables of a set Y is said to be exchangeable if they have the same distribution for all permutations.
- The conditional distribution of Y given the ordered sample is then the uniform distribution on the set of all permutations of Y.
- Conditioning on the ordered variables leads to permutation tests.
- Permutation tests can be very efficient in testing an exchangeable null-hypothesis against a non-exchangeable alternative, e.g. for testing if two samples differ in some way.

(46)

MC permutation test

- An MC-based permutation test can be implemented as follows.
 - 1 Draw N permutations, Y_1, \ldots, Y_N , of the vector y.
 - 2 Calculate the test statistic $t_i = t(Y_i)$ for each permutation.
 - 3 Estimate the p-value using MC integration according to

$$\widehat{p}(y) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{\{t_i \geq t(y)\}}.$$

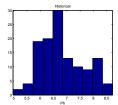
4 If $\widehat{p}(y) \leq \alpha$, reject \mathcal{H}_0 .

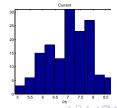
(47)

Permutation tests

Example: pH data

- We have 273 historical and current pH-measurements of 149 lakes in Wisconsin and want to test if the pH-levels have increased.
- We assume that all measurements are independent and that historical measurements have a distribution F_0 and that new measurements have a distribution G_0 .
- We want to test \mathcal{H}_0 : $F_0 = G_0$ against \mathcal{H}_1 : $F_0 \neq G_0$.





Example: pH data (cont.)

- Assume that the distribution for current data can be written as $G_0(y) = F_0(y \theta)$. That is, the mean of the current data is the mean of the historical data plus θ .
- We now want to test $\mathcal{H}_0: \theta = 0$ against $\mathcal{H}_1: \theta > 0$.
- Under \mathcal{H}_0 , all data are i.i.d. and thus exchangeable.
- We use the difference in the sample means as a test statistic.
- A permutation test gives p = 0.0198. Reject $\mathcal{H}_0!$

(49)