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Statistical hypotheses

A statistical hypothesis is a statement about the
distributional properties of data.
The goal of a hypothesis test is to see if data agrees with
the statistical hypothesis.
Rejection of a hypothesis indicates that there is sufficient
evidence in the data to make the hypothesis unlikely.
Strictly speaking, a hypothesis test does not accept a
hypothesis; it fails to reject it.
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Testing hypotheses

The basis of a hypothesis test consist of
a null hypothesis H0 that we wish to test.
a test statistic t(y), i.e., a function of the observed data y .
a critical region R.

If the test statistic falls into the critical region, then we
reject the null hypothesis H0.
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Important concepts

Significance The probability (risk) that the test incorrectly
rejects the null hypothesis. Also called the level of
the test (not. α).

Power The probability that the test rejects correctly the
null hypothesis. Is a function of the true parameter.

p-value The probability, given the null hypothesis, of
observing a result at least as extreme as the test
statistic.

Type I error Incorrectly rejecting the null hypothesis.
Type II error Failing to reject the null hypothesis.
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Testing simple hypotheses

A simple hypothesis specifies completely a single
distribution for the data, e.g., Y ∼ N(θ,1) with H0 : θ = 0.
We construct/define a test statistic t(y) such that large
values of t(y) indicate evidence against H0.
The p-value of the test is now p(y) = P(t(Y ) ≥ t(y)‖H0).
The critical region is R = {y : p(y) ≤ α}, where α is the
level of the test.
Thus, to evaluate the p-value we need to be able to
compute probabilities under the distribution of t(Y ) under
H0.
This can be tricky if this distribution is complex. Use MC!
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MC tests of a simple hypothesis

An MC-based algorithm for testing simple hypotheses goes
as follows:

1 Draw N samples, Y1, . . . ,YN , from the distribution specified
by H0.

2 Calculate the test statistic ti = t(Yi ) for each sample.
3 Estimate the p-value using MC integration by letting

p̂(y) =
1
N

N∑
i=1

1{ti≥t(y)}.

4 If p̂(y) ≤ α, reject H0.
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Permutation tests

A random vector Y = (Y1, . . . ,Yn) is said to be
exchangeable if Y = (YI1 , . . . ,YIn ) has the same
distribution for all all permutations {I1, . . . , In} of {1, . . . ,n}.
In this case, the conditional distribution of Y given the
ordered sample is the uniform distribution on the set of all
permutations of Y .
Conditioning on the ordered variables leads to permutation
tests.
Permutation tests can be very efficient in testing an
exchangeable null-hypothesis against a non-exchangeable
alternative, e.g., for testing if two samples differ in some
way.
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MC permutation test

An MC-based permutation test can be implemented as
follows.

1 Draw N permutations, Y1, . . . ,YN , of the vector y .
2 Calculate the test statistic ti = t(Yi ) for each permutation.
3 Estimate the p-value using MC integration according to

p̂(y) =
1
N

N∑
i=1

1{ti≥t(y)}.

4 If p̂(y) ≤ α, reject H0.
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Example: pH data

We have 273 historical and current pH-measurements
y = (y1, . . . , y273) [(y1, . . . , y124) are historical and
(y125, . . . , y273) are current] of 149 lakes in Wisconsin and
want to test if the pH-levels have increased.
We assume that all measurements are independent and
that historical measurements have a distribution F0 and
that new measurements have a distribution G0.
We want to test H0 : F0 = G0 against H1 : F0 6= G0.
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Example: pH data (cont.)

Assume that the distribution of the current data can be
written as G0(y) = F0(y − θ), i.e, the mean of the current
data is the mean of the historical data plus θ.
We now want to test H0 : θ = 0 against H1 : θ > 0.
Under H0, all data are i.i.d. and thus exchangeable.
Naturally, we use the difference

t(y) =
1

148

273∑
i=125

yi −
1

124

124∑
i=1

yi

as a test statistic.
A permutation test gives p = .0198 and we reject H0 on
the level .05.
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Missing data problems

Data augmentation

We suppose that
we are interested in some model parameter θ, but likelihood
inference based solely on the observed, but somehow
“incomplete”, data Y is intractable.
there exists some latent variable X which is not observed,
but if observed would make the estimation problem
relatively simple.

The pair (X ,Y ) is known as the complete data, whereas Y
is referred to as incomplete data.
We suppose that the joint distribution of (X ,Y ) admits, for
a given parameter θ, a density fθ(x , y) = fθ(y | x)fθ(x).
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Missing data problems

Maximum likelihood estimation in latent data models

Recall that given Y , the maximum likelihood estimator
(MLE) is given by

θ
def
= arg max

θ∈Θ
`(θ),

where

`(θ)
def
= log fθ(Y ) = log

∫
fθ(Y | x)fθ(x) dx

is the log-likelihood function.
Even though the complete data likelihood

fθ(x , y) = fθ(y | x)fθ(x)

has typically a simple form, the integral may prevent
closed-form computation of `(θ).
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Missing data problems

Example: radioactive emission

Assume a radioactive material is known to emit Po(100)
particles in unit time. A measurement equipment records
each particle with probability θ. If the recorded value was
y = 84, what is the maximum likelihood estimate of θ?
Here we failed to observe X , the total number of particles
emitted. Conditionally on X , y is an observation of a
Bin(θ,X ) variable.
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Missing data problems

Example: radioactive emission

Here the complete data likelihood

fθ(x , y) = fθ(y | x)fθ(x) =

(
x
y

)
θy (1− θ)x−ye−100 100x

x!

∝ θy (1− θ)x−y

has a simple, closed-form expression.
On the contrary, the observed data likelihood

fθ(y) =
∞∑

x=y

fθ(y | x)fθ(x) =
∞∑

x=y

(
x
y

)
θy (1− θ)x−ye−100 100x

x!

is complex.
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The algorithm

The expectation-maximization (EM) algorithm

Thus, maximizing `(θ) is a complicated task. Nevertheless,
for latent data models the problem of computing the MLE
can most often be cast efficiently into the framework of the
expectation-maximization (EM) algorithm.
Let p and q be two probability densities on some common
state space. The EM algorithm uses the fact that the
Kullback-Leibler divergence

K (p‖q)
def
=

∫
log
(

p(x)

q(x)

)
p(x) dx ≥ 0

is always positive and zero only if and only if p = q (for
almost all x).
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The algorithm

The EM algorithm (cont’d)

The algorithm goes as follows.
Data: Initial value θ0
Result: {θ`; ` ∈ N}
for `← 0,1,2, . . . do

set Qθ`(θ)← Eθ` (log fθ(X ,Y ) | Y );
set θ`+1 ← arg maxθ∈ΘQθ`(θ)

end

The two steps within the main loop are referred to as
expectation (E-) and maximization (M-) steps, respectively.
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The algorithm

Example: radioactive emission (cont.)

First, in order to execute the E-step we need the
conditional distribution

fθ(x | y) ∝ fθ(y | x)fθ(x) =

(
x
y

)
θy (1− θ)x−ye−100 100x

x!

∝ x!

(x − y)!
(1− θ)x−y 100x

x!
∝ {100(1− θ)}x−y

(x − y)!
, x ≥ y ,

which means that (X | Y = y)
d.
= W + y , where

W ∼ Po(100(1− θ)).
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The algorithm

Example: radioactive emission (cont.)

Thus,

log fθ(x , y) = y log θ + (x − y) log(1− θ) (+const.),

which implies that

Qθ`(θ) = Eθ` (log fθ(X ,Y ) | Y )

= Y log θ + {Eθ`(X | Y )− Y} log(1− θ)

= Y log θ + 100(1− θ`) log(1− θ),

as Eθ`(X | Y ) = 100(1− θ`) + Y .
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The algorithm

Example: radioactive emission (cont.)

Letting θ`+1 be the maximum of Qθ`(θ) with respect to θ
yields the updating formula

θ`+1 =
Y

Y + 100(1− θ`)
.

In MATLAB:

L = 50;
theta = zeros(1,L);
y = 84;
theta(1) = 0.5;
for i = 2:50,

theta(i) = y/(y + 100*(1 - theta(i - 1)));
end
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The algorithm

Example: radioactive emission (cont.)

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Iteration

θ

Figure: EM learning trajectory (blue curve) for θ. Red-dashed line
indicates the value 0.84.
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Some theory

The EM inequality

In order to understand the EM algorithm, define the entropy

Hθ′(θ)
def
= `(θ)−Qθ′(θ)

= log fθ(Y )−
∫
{ log fθ(x ,Y )}fθ′(x | Y ) dx

= −
∫
{ log fθ(x | Y )}fθ′(x | Y ) dx .

Consequently,

Hθ′(θ)−Hθ′(θ′) =

∫
log
{

fθ′(x | Y )

fθ(x | Y )

}
fθ′(x | Y ) dx

= K (fθ′(x | Y )‖fθ(x | Y )) ≥ 0.
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Some theory

The EM inequality (cont’d)

By rearranging the terms we obtain the following.

Theorem (the EM inequality)

For all (θ, θ′) ∈ Θ2 it holds that

`(θ)− `(θ′) ≥ Qθ′(θ)−Qθ′(θ′),

where the equality is strict unless fθ′(x | Y ) = fθ(x | Y ) (a.s.).

Thus, by the very construction of {θ`; ` ∈ N} it is made sure
that {`(θ`); ` ∈ N} is non-decreasing. Hence, the EM
algorithm is a monotone optimization algorithm.
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Some theory

Convergence of EM

Under additional differentiability assumptions one may
prove that

∇θ`(θ′) = ∇θQθ′(θ)|θ=θ′ .

Thus, if the algorithm ever stops at θ̃, then the mapping
θ 7→ Qθ̃(θ) must be maximal at θ̃, which implies that
∇θ`(θ̃) = 0, i.e. θ̃ is a stationary point of the likelihood.
The “if the algorithm ever stops”-part has to be established
rigorously and some more analysis is thus needed to proof
the convergence. This is however possible.
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Some theory

EM in exponential families

In order to be practically useful, the E- and M-steps of EM
have to be feasible. A rather general context in which this
is the case is the following.

Definition (exponential family)

The family {fθ(x , y); θ ∈ Θ} defines an exponential family if the
complete data likelihood is of form

fθ(x , y) = exp (ψ(θ)ᵀφ(x)− c(θ)) h(x),

where φ and ψ are (possibly) vector-valued functions on Rd and
Θ, respectively, and h is a non-negative real-valued function on
Rd . All these quantities may depend on y .

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (30)



logga

MC methods for hypothesis testing (Ch. 8) The expectation-maximisation (EM) algorithm

Some theory

EM in exponential families (cont’d)

The intermediate quantity becomes

Qθ′(θ) = ψ(θ)ᵀEθ′ (φ(x) | Y )− c(θ)

+ Eθ′ (log h(x) | Y )︸ ︷︷ ︸
(∗)

,

where (∗) does not depend on θ and may thus be ignored.
Consequently, in order to be able to apply EM we need

1 to be able to compute the “smoothed” sufficient statistics

τ = Eθ′ (φ(X ) | Y ) =

∫
φ(x)fθ′(x | Y ) dx .

2 maximization of θ 7→ ψ(θ)ᵀτ − c(θ) to be feasible for all τ .
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A Monte Carlo EM implementation

Example: nonlinear Gaussian model

Let (yi)
n
i=1 be independent observations of a random

variable
Y = h(X ) + σyεy ,

where h is a possibly nonlinear function and

X = µ+ σxεx

is not observable. Here εx and εy are independent
standard Gaussian noise variables.
The parameters θ = (µ, σx ) governing the distribution of
the unobservable variable X are unknown while it is known
that σy = .5.
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A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

Given observations Y = (Y1, . . . ,Yn), the likelihood is

`(θ) = log

{
n∏

i=1

∫
f (Yi | xi)fθ(xi) dxi

}
=− n log(2πσxσy )

+
n∑

i=1

log
∫

exp

(
− 1

2σ2
y
{Yi − h(xi)}2 −

1
2σ2

x
{xi − µ}2

)
dxi ,

which is intractable for a general h.
The complete data log-likelihood log{

∏n
i=1 f (yi | xi)fθ(xi)}

is however easily computed as it does not contain any
integral.
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A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

In this case the complete data likelihood belongs to an
exponential family with

φ(x1:n) =

(
n∑

i=1

x2
i ,

n∑
i=1

xi

)
, ψ(θ) =

(
− 1

2σ2
x
,
µ

σ2
x

)
,

and

c(θ) = −n
2

logσ2
x −

nµ2

2σ2
x
.

Letting τi = Eθ`(φi(X1:n) | Y1:n), i ∈ {1,2}, leads to

µ`+1 =
τ2

n
,

(σ2
x )`+1 =

τ1

n
− µ2

`+1.
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A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

Since the “smoothed” sufficient statistics are of additive
form it holds that, e.g.,

τ1 = Eθ`

(
n∑

i=1

X 2
i | Y1:n

)
=

n∑
i=1

Eθ`
(

X 2
i | Yi

)
(and similarly for τ2).
However, computing expectations under

fθ`(xi | yi) ∝ exp

(
− 1

2σ2
y
{yi − h(xi)}2 −

1
2(σ2

x )`
{xi − µ`}2

)
is in general infeasible (i.e., when the transformation h is a
general nonlinear function).
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A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

Thus, within each iteration of EM we sample each
component fθ`(xi | yi) using an MH-step.
For simplicity we use the independent proposal
r(xi) = fθ`(xi), yielding the MH acceptance probability

α(X (k)
i ,X ∗i ) = 1 ∧

fθ`(Yi | X ∗i )

fθ`(Yi | X
(k)
i )

= 1∧exp

(
− 1

2σ2
y
{h2(X ∗i )− h2(X (k)

i ) + 2Yi(h(X (k)
i )− h(X ∗i ))}2

)
.
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A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

Data: Initial value θ0; Y1:n
Result: {θ`; ` ∈ N}
for `← 0,1,2, . . . do

set τ̂j ← 0, ∀j ;
for i ← 1, . . . ,n do

run an MH sampler targeting fθ`(xi | Yi) ; (X (k)
i )N`

k=1;
set τ̂1 ← τ̂1 +

∑N`
k=1(X (k)

i )2/N`;
set τ̂2 ← τ̂2 +

∑N`
k=1 X (k)

i /N`;
end
set µ`+1 ← τ̂2/n;
set (σ2

x )`+1 ← τ̂1/n − µ2
`+1;

end
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A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

In order to assess the performance of the MCEM algorithm
we focus on the linear case, h(x) = x .
A data record comprising n = 40 values was produced by
simulation under (µ∗, σ∗x ) = (1, .4) with σy = .4.
In this case, the true MLE is known and given by (check
this!)

µ̂(Y1:n) =
1
n

n∑
i=1

Yi = 1.04,

σ̂2
x (Y1:n) =

1
n

n∑
i=1

{Yi − µ̂(Y1:n)}2 − .42 = .27.
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A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)
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Figure: EM learning trajectory (blue curve) for µ in the case h(x) = x .
Red-dashed line indicates true MLE. N` = 1,000 for all iterations.
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A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)
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Figure: EM learning trajectory (blue curve) for σ2
x in the case h(x) = x .

Red-dashed line indicates true MLE. N` = 1,000 for all iterations.
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A Monte Carlo EM implementation

Averaging

Roughly, for the MCEM algorithm one may prove that the
variance of θ` − θ̂ (where θ̂ is the MLE) is of order 1/N`.
In the idealised situation where the estimates (θ`) are
uncorrelated (which is not the case here) one may obtain
an improved estimator of θ̂ by combining the individual
estimates θ` in proportion of the inverse of their variance.
Starting the averaging at iteration `0 leads to

θ̃` =
∑̀

m=`0

Nm∑`
m′=`0

Nm′
θm, ` ≥ `0.

In the idealised situation the variance of θ̃` is inversely
proportional to

∑`
m=`0

Nm (= total number of simulations).
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A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)
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Figure: EM learning trajectory (blue curve) for µ in the case h(x) = x .
Red-dashed line indicates true MLE. Averaging after `0 = 30
iterations.
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A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)
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Figure: EM learning trajectory (blue curve) for σ2
x in the case

h(x) = x . Red-dashed line indicates true MLE. Averaging after
`0 = 30 iterations.
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