Computer Intensive Methods in Mathematical Statistics

Johan Westerborn

Department of mathematics KTH Royal Institute of Technology johawes@kth.se

> Lecture 15 The EM algorithm 12 May 2017

> > KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (1

The expectation-maximisation (EM) algorithm

Plan of today's lecture

MC methods for hypothesis testing (Ch. 8)

- 2 The expectation-maximisation (EM) algorithm
 - Missing data problems
 - The algorithm
 - Some theory
 - A Monte Carlo EM implementation

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (2)

Outline

1 MC methods for hypothesis testing (Ch. 8)

2 The expectation-maximisation (EM) algorithm

- Missing data problems
- The algorithm
- Some theory
- A Monte Carlo EM implementation

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (3)

Statistical hypotheses

- A statistical hypothesis is a statement about the distributional properties of data.
- The goal of a hypothesis test is to see if data agrees with the statistical hypothesis.
- Rejection of a hypothesis indicates that there is sufficient evidence in the data to make the hypothesis unlikely.
- Strictly speaking, a hypothesis test does not accept a hypothesis; it fails to reject it.

Testing hypotheses

The basis of a hypothesis test consist of

- **a null hypothesis** \mathcal{H}_0 that we wish to test.
- **a test statistic** t(y), i.e., a function of the observed data y.
- a critical region R.

If the test statistic falls into the critical region, then we reject the null hypothesis H₀.

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (5)

Important concepts

- Significance The probability (risk) that the test incorrectly rejects the null hypothesis. Also called the level of the test (not. α).
 - Power The probability that the test rejects correctly the null hypothesis. Is a function of the true parameter.
 - *p*-value The probability, given the null hypothesis, of observing a result at least as extreme as the test statistic.

KTH Royal Institute of Technology

- Type I error Incorrectly rejecting the null hypothesis.
- Type II error Failing to reject the null hypothesis.

Johan Westerborn

Testing simple hypotheses

- A simple hypothesis specifies completely a single distribution for the data, e.g., Y ~ N(θ, 1) with H₀ : θ = 0.
- We construct/define a test statistic t(y) such that large values of t(y) indicate evidence against H₀.
- The *p*-value of the test is now $p(y) = \mathbb{P}(t(Y) \ge t(y) || \mathcal{H}_0)$.
- The critical region is R = {y : p(y) ≤ α}, where α is the level of the test.
- Thus, to evaluate the *p*-value we need to be able to compute probabilities under the distribution of t(Y) under H₀.
- This can be tricky if this distribution is complex. Use MC!

Johan Westerborn

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MC tests of a simple hypothesis

- An MC-based algorithm for testing simple hypotheses goes as follows:
 - Draw N samples, Y₁,..., Y_N, from the distribution specified by H₀.
 - **2** Calculate the test statistic $t_i = t(Y_i)$ for each sample.
 - 3 Estimate the *p*-value using MC integration by letting

$$\widehat{\rho}(y) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{\{t_i \ge t(y)\}}.$$

4 If $\widehat{p}(y) \leq \alpha$, reject \mathcal{H}_0 .

Johan Westerborn

Permutation tests

- A random vector Y = (Y₁,..., Y_n) is said to be exchangeable if Y = (Y₁,..., Y_n) has the same distribution for all all permutations {I₁,..., I_n} of {1,..., n}.
- In this case, the conditional distribution of Y given the ordered sample is the uniform distribution on the set of all permutations of Y.
- Conditioning on the ordered variables leads to permutation tests.
- Permutation tests can be very efficient in testing an exchangeable null-hypothesis against a non-exchangeable alternative, e.g., for testing if two samples differ in some way.

Johan Westerborn

MC permutation test

- An MC-based permutation test can be implemented as follows.
 - **1** Draw *N* permutations, Y_1, \ldots, Y_N , of the vector *y*.
 - 2 Calculate the test statistic $t_i = t(Y_i)$ for each permutation.
 - 3 Estimate the *p*-value using MC integration according to

$$\widehat{p}(y) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{\{t_i \ge t(y)\}}.$$

4 If $\widehat{p}(y) \leq \alpha$, reject \mathcal{H}_0 .

Johan Westerborn

Computer Intensive Methods (10)

Example: pH data

- We have 273 historical and current pH-measurements $y = (y_1, \dots, y_{273}) [(y_1, \dots, y_{124})]$ are historical and $(y_{125}, \dots, y_{273})$ are current] of 149 lakes in Wisconsin and want to test if the pH-levels have increased.
- We assume that all measurements are independent and that historical measurements have a distribution F_0 and that new measurements have a distribution G_0 .
- We want to test $\mathcal{H}_0 : F_0 = G_0$ against $\mathcal{H}_1 : F_0 \neq G_0$.

Johan Westerborn

Example: pH data (cont.)

- Assume that the distribution of the current data can be written as $G_0(y) = F_0(y \theta)$, i.e, the mean of the current data is the mean of the historical data plus θ .
- We now want to test $\mathcal{H}_0: \theta = 0$ against $\mathcal{H}_1: \theta > 0$.
- Under \mathcal{H}_0 , all data are i.i.d. and thus exchangeable.

Naturally, we use the difference

$$t(y) = \frac{1}{148} \sum_{i=125}^{273} y_i - \frac{1}{124} \sum_{i=1}^{124} y_i$$

as a test statistic.

A permutation test gives p = .0198 and we reject \mathcal{H}_0 on the level .05.

Johan Westerborn

Outline

1 MC methods for hypothesis testing (Ch. 8)

2 The expectation-maximisation (EM) algorithm

- Missing data problems
- The algorithm
- Some theory
- A Monte Carlo EM implementation

Johan Westerborn

Computer Intensive Methods (13)

Missing data problems

The expectation-maximisation (EM) algorithm

Outline

1 MC methods for hypothesis testing (Ch. 8)

2 The expectation-maximisation (EM) algorithm

- Missing data problems
- The algorithm
- Some theory
- A Monte Carlo EM implementation

KTH Royal Institute of Technology

Image: A matrix

Johan Westerborn

Computer Intensive Methods (14)

Missing data problems

Data augmentation

We suppose that

- we are interested in some model parameter θ, but likelihood inference based solely on the observed, but somehow "incomplete", data Y is intractable.
- there exists some latent variable X which is not observed, but if observed would make the estimation problem relatively simple.
- The pair (X, Y) is known as the complete data, whereas Y is referred to as incomplete data.
- We suppose that the joint distribution of (X, Y) admits, for a given parameter θ , a density $f_{\theta}(x, y) = f_{\theta}(y | x)f_{\theta}(x)$.

• = • •

Missing data problems

Data augmentation

We suppose that

- we are interested in some model parameter θ, but likelihood inference based solely on the observed, but somehow "incomplete", data Y is intractable.
- there exists some latent variable X which is not observed, but if observed would make the estimation problem relatively simple.
- The pair (X, Y) is known as the complete data, whereas Y is referred to as incomplete data.
- We suppose that the joint distribution of (X, Y) admits, for a given parameter θ , a density $f_{\theta}(x, y) = f_{\theta}(y | x)f_{\theta}(x)$.

Johan Westerborn

The expectation-maximisation (EM) algorithm

Missing data problems

Maximum likelihood estimation in latent data models

 Recall that given Y, the maximum likelihood estimator (MLE) is given by

$$heta \stackrel{\mathsf{def}}{=} rg\max_{ heta \in \Theta} \ell(heta),$$

where

$$\ell(\theta) \stackrel{\text{\tiny def}}{=} \log f_{\theta}(Y) = \log \int f_{\theta}(Y \mid x) f_{\theta}(x) \, dx$$

is the log-likelihood function.

Even though the complete data likelihood

$$f_{\theta}(x, y) = f_{\theta}(y \mid x) f_{\theta}(x)$$

has typically a simple form, the integral may prevent closed-form computation of $\ell(\theta)$.

Johan Westerborn

Missing data problems

The expectation-maximisation (EM) algorithm

Example: radioactive emission

- Assume a radioactive material is known to emit Po(100) particles in unit time. A measurement equipment records each particle with probability θ . If the recorded value was y = 84, what is the maximum likelihood estimate of θ ?
- Here we failed to observe X, the total number of particles emitted. Conditionally on X, y is an observation of a Bin(θ, X) variable.

Johan Westerborn

The expectation-maximisation (EM) algorithm

Missing data problems

Example: radioactive emission

Here the complete data likelihood

$$f_{\theta}(x,y) = f_{\theta}(y \mid x) f_{\theta}(x) = \binom{x}{y} \theta^{y} (1-\theta)^{x-y} e^{-100} \frac{100^{x}}{x!}$$
$$\propto \theta^{y} (1-\theta)^{x-y}$$

has a simple, closed-form expression.

On the contrary, the observed data likelihood

$$f_{\theta}(y) = \sum_{x=y}^{\infty} f_{\theta}(y \mid x) f_{\theta}(x) = \sum_{x=y}^{\infty} {x \choose y} \theta^{y} (1-\theta)^{x-y} e^{-100} \frac{100^{x}}{x!}$$

is complex.

Johan Westerborn

Computer Intensive Methods (18)

The algorithm

Outline

1 MC methods for hypothesis testing (Ch. 8)

2 The expectation-maximisation (EM) algorithm

- Missing data problems
- The algorithm
- Some theory
- A Monte Carlo EM implementation

KTH Royal Institute of Technology

< - 17 →

Johan Westerborn

Computer Intensive Methods (19)

The algorithm

The expectation-maximization (EM) algorithm

- Thus, maximizing ℓ(θ) is a complicated task. Nevertheless, for latent data models the problem of computing the MLE can most often be cast efficiently into the framework of the expectation-maximization (EM) algorithm.
- Let p and q be two probability densities on some common state space. The EM algorithm uses the fact that the Kullback-Leibler divergence

$$\mathcal{K}(p\|q) \stackrel{ ext{def}}{=} \int \log\left(rac{p(x)}{q(x)}
ight) p(x) \, dx \geq 0$$

is always positive and zero only if and only if p = q (for almost all x).

Johan Westerborn

The expectation-maximisation (EM) algorithm

The algorithm

The EM algorithm (cont'd)

The algorithm goes as follows.
Data: Initial value
$$\theta_0$$

Result: $\{\theta_\ell; \ell \in \mathbb{N}\}$
for $\ell \leftarrow 0, 1, 2, \dots$ do
 $| set Q_{\theta_\ell}(\theta) \leftarrow \mathbb{E}_{\theta_\ell}(\log f_{\theta}(X, Y) \mid Y);$
 $| set \theta_{\ell+1} \leftarrow \arg \max_{\theta \in \Theta} Q_{\theta_\ell}(\theta)$
end

The two steps within the main loop are referred to as expectation (E-) and maximization (M-) steps, respectively.

Image: A matrix

Johan Westerborn KTH Royal Institute of Technology Computer Intensive Methods (21) The algorithm

Example: radioactive emission (cont.)

First, in order to execute the E-step we need the conditional distribution

$$f_{\theta}(x \mid y) \propto f_{\theta}(y \mid x) f_{\theta}(x) = {\binom{x}{y}} \theta^{y} (1-\theta)^{x-y} e^{-100} \frac{100^{x}}{x!}$$
$$\propto \frac{x!}{(x-y)!} (1-\theta)^{x-y} \frac{100^{x}}{x!} \propto \frac{\{100(1-\theta)\}^{x-y}}{(x-y)!}, \quad x \ge y,$$

which means that $(X | Y = y) \stackrel{d}{=} W + y$, where $W \sim Po(100(1 - \theta))$.

Johan Westerborn

KTH Royal Institute of Technology

The algorithm

Example: radioactive emission (cont.)

Thus,

$$\log f_{\theta}(x, y) = y \log \theta + (x - y) \log(1 - \theta) \quad (+\text{const.}),$$

which implies that

$$egin{aligned} \mathcal{Q}_{ heta_\ell}(heta) &= \mathbb{E}_{ heta_\ell} \left(\log f_ heta(X,Y) \mid Y
ight) \ &= Y \log heta + \{ \mathbb{E}_{ heta_\ell}(X \mid Y) - Y \} \log(1- heta) \ &= Y \log heta + 100(1- heta_\ell) \log(1- heta), \end{aligned}$$

as $\mathbb{E}_{\theta_\ell}(X \mid Y) = 100(1 - \theta_\ell) + Y.$

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (23)

The expectation-maximisation (EM) algorithm

The algorithm

Example: radioactive emission (cont.)

Letting θ_{ℓ+1} be the maximum of Q_{θℓ}(θ) with respect to θ yields the updating formula

$$heta_{\ell+1} = rac{Y}{Y+100(1- heta_\ell)}.$$

In Matlab:

```
L = 50;
theta = zeros(1,L);
y = 84;
theta(1) = 0.5;
for i = 2:50,
    theta(i) = y/(y + 100*(1 - theta(i - 1)));
end
```

KTH Royal Institute of Technology

< ロ > < 同 > < 回 > < 回 >

Johan Westerborn

Computer Intensive Methods (24)

The expectation-maximisation (EM) algorithm

KTH Royal Institute of Technology

The algorithm

Example: radioactive emission (cont.)

Figure: EM learning trajectory (blue curve) for θ . Red-dashed line indicates the value 0.84.

Johan Westerborn

Computer Intensive Methods (25)

Some theory

Outline

1 MC methods for hypothesis testing (Ch. 8)

2 The expectation-maximisation (EM) algorithm

- Missing data problems
- The algorithm
- Some theory
- A Monte Carlo EM implementation

Johan Westerborn

KTH Royal Institute of Technology

< 🗇 🕨

Computer Intensive Methods (26)

Some theory

The EM inequality

In order to understand the EM algorithm, define the entropy

$$\begin{aligned} \mathcal{H}_{\theta'}(\theta) &\stackrel{\text{def}}{=} \ell(\theta) - \mathcal{Q}_{\theta'}(\theta) \\ &= \log f_{\theta}(Y) - \int \{\log f_{\theta}(x, Y)\} f_{\theta'}(x \mid Y) \, dx \\ &= -\int \{\log f_{\theta}(x \mid Y)\} f_{\theta'}(x \mid Y) \, dx. \end{aligned}$$

Consequently,

$$egin{aligned} \mathcal{H}_{ heta'}(heta) &- \mathcal{H}_{ heta'}(heta') = \int \log\left\{rac{f_{ heta'}(x\mid Y)}{f_{ heta}(x\mid Y)}
ight\}f_{ heta'}(x\mid Y)\,dx \ &= \mathcal{K}(f_{ heta'}(x\mid Y)\|f_{ heta}(x\mid Y)) \geq 0. \end{aligned}$$

Johan Westerborn

Computer Intensive Methods (27)

Some theory

The EM inequality (cont'd)

By rearranging the terms we obtain the following.

Theorem (the EM inequality)

For all $(\theta, \theta') \in \Theta^2$ it holds that

$$\ell(heta) - \ell(heta') \geq \mathcal{Q}_{ heta'}(heta) - \mathcal{Q}_{ heta'}(heta'),$$

where the equality is strict unless $f_{\theta'}(x \mid Y) = f_{\theta}(x \mid Y)$ (a.s.).

Thus, by the very construction of {θ_ℓ; ℓ ∈ ℕ} it is made sure that {ℓ(θ_ℓ); ℓ ∈ ℕ} is non-decreasing. Hence, the EM algorithm is a monotone optimization algorithm.

Johan Westerborn

KTH Royal Institute of Technology

・ロト ・回 ト ・ヨト ・ヨ

Convergence of EM

 Under additional differentiability assumptions one may prove that

$$abla_ heta \ell(heta') =
abla_ heta \mathcal{Q}_{ heta'}(heta)|_{ heta = heta'}\,.$$

- Thus, if the algorithm ever stops at $\tilde{\theta}$, then the mapping $\theta \mapsto Q_{\tilde{\theta}}(\theta)$ must be maximal at $\tilde{\theta}$, which implies that $\nabla_{\theta} \ell(\tilde{\theta}) = 0$, i.e. $\tilde{\theta}$ is a stationary point of the likelihood.
- The "if the algorithm ever stops"-part has to be established rigorously and some more analysis is thus needed to proof the convergence. This is however possible.

Some theory

EM in exponential families

In order to be practically useful, the E- and M-steps of EM have to be feasible. A rather general context in which this is the case is the following.

Definition (exponential family)

The family $\{f_{\theta}(x, y); \theta \in \Theta\}$ defines an exponential family if the complete data likelihood is of form

$$f_{\theta}(\mathbf{x}, \mathbf{y}) = \exp\left(\psi(\theta)^{\mathsf{T}} \phi(\mathbf{x}) - \mathbf{c}(\theta)\right) h(\mathbf{x}),$$

where ϕ and ψ are (possibly) vector-valued functions on \mathbb{R}^d and Θ , respectively, and *h* is a non-negative real-valued function on \mathbb{R}^d . All these quantities may depend on *y*.

Some theory

EM in exponential families (cont'd)

The intermediate quantity becomes

$$\mathcal{Q}_{ heta'}(heta) = \psi(heta)^{\intercal} \mathbb{E}_{ heta'}\left(\phi(x) \mid Y
ight) - c(heta) + \underbrace{\mathbb{E}_{ heta'}\left(\log h(x) \mid Y
ight)}_{(*)},$$

where (*) does not depend on θ and may thus be ignored.
Consequently, in order to be able to apply EM we need
to be able to compute the "smoothed" sufficient statistics

$$au = \mathbb{E}_{ heta'}\left(\phi(X) \mid Y
ight) = \int \phi(x) f_{ heta'}(x \mid Y) \, dx.$$

2

maximization of $\theta \mapsto \psi(\theta)^{\mathsf{T}} \tau - c(\theta)$ to be feasible for all τ .

Johan Westerborn

KTH Royal Institute of Technology

Computer Intensive Methods (31)

A Monte Carlo EM implementation

Outline

The expectation-maximisation (EM) algorithm

1 MC methods for hypothesis testing (Ch. 8

2 The expectation-maximisation (EM) algorithm

- Missing data problems
- The algorithm
- Some theory
- A Monte Carlo EM implementation

KTH Royal Institute of Technology

< - 17 →

Johan Westerborn

Computer Intensive Methods (32)

The expectation-maximisation (EM) algorithm

A Monte Carlo EM implementation

Example: nonlinear Gaussian model

Let (y_i)ⁿ_{i=1} be independent observations of a random variable

$$Y = h(X) + \sigma_y \varepsilon_y,$$

where *h* is a possibly nonlinear function and

$$\boldsymbol{X} = \boldsymbol{\mu} + \sigma_{\boldsymbol{X}} \boldsymbol{\varepsilon}_{\boldsymbol{X}}$$

is not observable. Here ε_x and ε_y are independent standard Gaussian noise variables.

The parameters $\theta = (\mu, \sigma_x)$ governing the distribution of the unobservable variable *X* are unknown while it is known that $\sigma_y = .5$.

Johan Westerborn

A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

Given observations $Y = (Y_1, \ldots, Y_n)$, the likelihood is

$$\ell(\theta) = \log \left\{ \prod_{i=1}^{n} \int f(Y_i \mid x_i) f_{\theta}(x_i) \, dx_i \right\}$$

= $- n \log(2\pi\sigma_x \sigma_y)$
+ $\sum_{i=1}^{n} \log \int \exp\left(-\frac{1}{2\sigma_y^2} \{Y_i - h(x_i)\}^2 - \frac{1}{2\sigma_x^2} \{x_i - \mu\}^2\right) dx_i,$

which is intractable for a general h.

The complete data log-likelihood log{ $\prod_{i=1}^{n} f(y_i | x_i) f_{\theta}(x_i)$ } is however easily computed as it does not contain any integral.

Johan Westerborn

A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

In this case the complete data likelihood belongs to an exponential family with

$$\phi(\mathbf{x}_{1:n}) = \left(\sum_{i=1}^n x_i^2, \sum_{i=1}^n x_i\right), \quad \psi(\theta) = \left(-\frac{1}{2\sigma_x^2}, \frac{\mu}{\sigma_x^2}\right),$$

~

and

$$c(\theta) = -\frac{n}{2} \log \sigma_x^2 - \frac{n\mu^2}{2\sigma_x^2}.$$

• Letting $\tau_i = \mathbb{E}_{\theta_\ell}(\phi_i(X_{1:n}) \mid Y_{1:n}), i \in \{1, 2\}$, leads to
 $\mu_{\ell+1} = \frac{\tau_2}{n},$
 $(\sigma_x^2)_{\ell+1} = \frac{\tau_1}{n} - \mu_{\ell+1}^2.$

Johan Westerborn

Computer Intensive Methods (35)

A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

 Since the "smoothed" sufficient statistics are of additive form it holds that, e.g.,

$$\tau_{1} = \mathbb{E}_{\theta_{\ell}}\left(\sum_{i=1}^{n} X_{i}^{2} \mid Y_{1:n}\right) = \sum_{i=1}^{n} \mathbb{E}_{\theta_{\ell}}\left(X_{i}^{2} \mid Y_{i}\right)$$

(and similarly for τ_2).

However, computing expectations under

$$f_{\theta_{\ell}}(x_i \mid y_i) \propto \exp\left(-\frac{1}{2\sigma_y^2}\{y_i - h(x_i)\}^2 - \frac{1}{2(\sigma_x^2)_{\ell}}\{x_i - \mu_{\ell}\}^2\right)$$

is in general infeasible (i.e., when the transformation h is a general nonlinear function).

Johan Westerborn

Example: nonlinear Gaussian model (cont.)

- Thus, within each iteration of EM we sample each component f_{θ_ℓ}(x_i | y_i) using an MH-step.
- For simplicity we use the independent proposal $r(x_i) = f_{\theta_{\ell}}(x_i)$, yielding the MH acceptance probability

$$\alpha(X_{i}^{(k)}, X_{i}^{*}) = 1 \wedge \frac{f_{\theta_{\ell}}(Y_{i} \mid X_{i}^{*})}{f_{\theta_{\ell}}(Y_{i} \mid X_{i}^{(k)})}$$

= 1 \lapha exp \left(-\frac{1}{2\sigma_{y}^{2}} \{h^{2}(X_{i}^{*}) - h^{2}(X_{i}^{(k)}) + 2Y_{i}(h(X_{i}^{(k)}) - h(X_{i}^{*}))\}^{2} \right)

Johan Westerborn

The expectation-maximisation (EM) algorithm

A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

```
Data: Initial value \theta_0; Y_{1:n}
Result: \{\theta_{\ell}; \ell \in \mathbb{N}\}
for \ell \leftarrow 0, 1, 2, \dots do
       set \hat{\tau}_i \leftarrow 0, \forall j;
       for i \leftarrow 1, \ldots, n do
               run an MH sampler targeting f_{\theta_{\ell}}(x_i \mid Y_i) \sim (X_i^{(k)})_{k=1}^{N_{\ell}};
               set \hat{\tau}_1 \leftarrow \hat{\tau}_1 + \sum_{k=1}^{N_\ell} (X_i^{(k)})^2 / N_\ell;
               set \hat{\tau}_2 \leftarrow \hat{\tau}_2 + \sum_{k=1}^{N_\ell} X_i^{(k)} / N_\ell;
       end
       set \mu_{\ell+1} \leftarrow \hat{\tau}_2/n;
set (\sigma_x^2)_{\ell+1} \leftarrow \hat{\tau}_1/n - \mu_{\ell+1}^2;
end
```

Johan Westerborn

A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

- In order to assess the performance of the MCEM algorithm we focus on the linear case, h(x) = x.
- A data record comprising n = 40 values was produced by simulation under $(\mu^*, \sigma_x^*) = (1, .4)$ with $\sigma_y = .4$.

In this case, the true MLE is known and given by (check this!)

$$\hat{\mu}(Y_{1:n}) = \frac{1}{n} \sum_{i=1}^{n} Y_i = 1.04,$$
$$\hat{\sigma}_x^2(Y_{1:n}) = \frac{1}{n} \sum_{i=1}^{n} \{Y_i - \hat{\mu}(Y_{1:n})\}^2 - .4^2 = .27.$$

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (39)

The expectation-maximisation (EM) algorithm

A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

Figure: EM learning trajectory (blue curve) for μ in the case h(x) = x. Red-dashed line indicates true MLE. $N_{\ell} = 1,000$ for all iterations.

KTH Royal Institute of Technology

Computer Intensive Methods (40)

Johan Westerborn

The expectation-maximisation (EM) algorithm

A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

Figure: EM learning trajectory (blue curve) for σ_x^2 in the case h(x) = x. Red-dashed line indicates true MLE. $N_\ell = 1,000$ for all iterations.

KTH Royal Institute of Technology

Computer Intensive Methods (41)

Johan Westerborn

A Monte Carlo EM implementation

Averaging

- Roughly, for the MCEM algorithm one may prove that the variance of $\theta_{\ell} \hat{\theta}$ (where $\hat{\theta}$ is the MLE) is of order $1/N_{\ell}$.
 - In the idealised situation where the estimates (θ_{ℓ}) are uncorrelated (which is not the case here) one may obtain an improved estimator of $\hat{\theta}$ by combining the individual estimates θ_{ℓ} in proportion of the inverse of their variance. Starting the averaging at iteration ℓ_0 leads to

$$\tilde{\theta}_{\ell} = \sum_{m=\ell_0}^{\ell} \frac{N_m}{\sum_{m'=\ell_0}^{\ell} N_{m'}} \theta_m, \quad \ell \geq \ell_0.$$

In the idealised situation the variance of $\tilde{\theta}_{\ell}$ is inversely proportional to $\sum_{m=\ell_0}^{\ell} N_m$ (= total number of simulations).

The expectation-maximisation (EM) algorithm

KTH Royal Institute of Technology

A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

Figure: EM learning trajectory (blue curve) for μ in the case h(x) = x. Red-dashed line indicates true MLE. Averaging after $\ell_0 = 30$ iterations.

Johan Westerborn

Computer Intensive Methods (43)

The expectation-maximisation (EM) algorithm

A Monte Carlo EM implementation

Example: nonlinear Gaussian model (cont.)

Figure: EM learning trajectory (blue curve) for σ_x^2 in the case h(x) = x. Red-dashed line indicates true MLE. Averaging after $\ell_0 = 30$ iterations.

Johan Westerborn

KTH Royal Institute of Technology

Computer Intensive Methods (44)