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Last time: the EM algorithm

m The algorithm goes as follows.
Data: Initial value 6,
Result: {0; ¢ € N}
for/+ 0,1,2,...do
set Qy,(0) « Ey, (log fy(X,Y) | Y);
set 0y 1 < argmaxycg 9, ()
end

m The two steps within the main loop are referred to as
expectation and maximization steps, respectively.
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Last time: the EM inequality

m By rearranging the terms we obtain the following.

For all (6,0") € @2 it holds that

00) — £(0') > Qy(8) — Qu ('),

where the equality is strict unless fy(x | Y) = fy(x | Y).

m Thus, by the very construction of {6,; ¢ € N} it is made sure
that {¢(6,); ¢ € N} is non-decreasing. Hence, the EM
algorithm is a monotone optimization algorithm.
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EM in exponential families

m In order to be practically useful, the E- and M-steps of EM
have to be feasible. A rather general context in which this
is the case is the following.

Definition ( )

The family {fy(x, y); 0 € ©} defines an exponential family if the
complete data likelihood is of form

fo(x,y) = exp (¥(0)T¢(x) — ¢(0)) h(x),

where ¢ and 1 are (possibly) vector-valued functions on R¢ and
©, respectively, and h is a non-negative real-valued function on
RY. All these quantities may depend on .

v
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EM in exponential families (cont'd)

m The intermediate quantity becomes
Qp (0) = Y(0)"Ey (¢(x) | Y) — c(0)
+ Eg (logh(x) | Y),
(*)

where (x) does not depend on # and may thus be ignored.
m Consequently, in order to be able to apply EM we need
to be able to compute the smoothed sufficient statistics

P =By (6(X) | V) = [ 600t (x| ).

maximization of 8 — ¢(0)TT — ¢(0) to be feasible for all 7.
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Example: nonlinear Gaussian model

m Let (y;)7, be independent observations of a random
variable

where his a possibly nonlinear function and
X - ILL + OxEx

is not observable. Here 4 and ¢, are independent
standard Gaussian noise variables.

m The parameters 6 = (i, 02) governing the distribution of
the unobservable variable X are unknown while it is known
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Example: nonlinear Gaussian model (cont.)

m In this case the complete data likelihood belongs to an
exponential family with

o(x1n) = (Z §_;x> w(m:(—zlﬁ,;;),

and »
n nu

0) = =1 24

c(0) 5 ogax+20)2(

m Letting 7; = Eq,(¢i(X1.n) | Y1.0), i € {1,2}, leads to

He+1 =

2

— Hoga-

-
n
2 T
(0x)e+1 = n
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Example: nonlinear Gaussian model (cont.)

m Since the “smoothed” sufficient statistics are of additive
form it holds that, e.g.,

n n
1 = By, (lez \ Y1:n> = Ty, (Xiz | Yi)
i—1

i=1
(and similarly for 7»).
m However, computing expectations under

for(Xi | yi) o< exp (-2(;2)6{}4’ — h(x;)}? - 21‘2{)0 - M})
y y

is in general infeasible (i.e. when the transformation his a
general nonlinear function).

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (10)



Last time: the EM algorithm
0000000 e0000000

Example: nonlinear Gaussian model (cont.)

m Thus, within each iteration of EM we sample each
component fy,(x; | yi) using MH.

m For simplicity we use the independent proposal
r(x;) = fp,(x;), yielding the MH acceptance probability

f@e(\/i | )(/*) _

(K) yox
a(X X)) =1A =
/ f, (Vi | X1

]

1hexp (—z(iﬁ)e{h%x,-*) — PP+ 2Yi(hx) - h(x,-*))}Q) .
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Example: nonlinear Gaussian model (cont.)

Data: Initial value 6y; Yi.,

Result: {0; ¢ € N}

for/+0,1,2,...do

set 7 < 0, VJ;

fori<1,...,ndo
run an MH sampler targeting f, (x; | Y;) ~ (X")Ne
set 71« 71+ Tpsy (X1)2/Ny;
set 72 72+ Yty X\ /N

end

set o1 < T2/,

set (0%)e1 < 71 /n—pZ y;

end
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Example: nonlinear Gaussian model (cont.)

m In order to assess the performance of this Monte Carlo EM
algorithm we focus on the linear case, h(x) = x.

m A data record comprising n = 40 values was produced by
simulation under (1*, o) = (1, .4) with o, = 4.

m In this case, the true MLE is known and given by (check
this!)

ia(Yi.n) = ZY_104

2(Yy.p) = — Z{Y i(Yy.n) )2 — 4% = 27.
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Example: nonlinear Gaussian model (cont.)

W estimate

L L L L
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EM interation index

Figure: EM learning trajectory (blue curve) for p in the case h(x) = x.
Red-dashed line indicates true MLE. N, = 200 for all iterations.
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Example: nonlinear Gaussian model (cont.)

o estimate

0 10 20 30 40 50 60 70 80 90 100
EM interation index

Figure: EM learning trajectory (blue curve) for 2 in the case h(x) = x.
Red-dashed line indicates true MLE. N, = 200 for all iterations.
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Averaging

m Roughly, for the MCEM algorithm one may prove that the
variance of 6, — § (where @ is the MLE) is of order 1/N,.

m In the idealised situation where the estimates (0,), are
uncorrelated (which is not the case here) one may obtain
an improved estimator of by combining the individual
estimates 6, in proportion of the inverse of their variance.
Starting the averaging at iteration ¢, leads to

~ N
Or=> ————0p, (>4
0+ =Ly sz Ly Ne

m In the idealised situation the variance of 6, decreases as
/50, , N (= total number of simulations).
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Example: nonlinear Gaussian model (cont.)

1 estimate

Figure: EM learning trajectory (blue curve) for n in the case h(x) = x.
Red-dashed line indicates true MLE. Averaging after /o = 30

iterations.
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Example: nonlinear Gaussian model (cont.)

o estimate

L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
EM interation index

Figure: EM learning trajectory (blue curve) for o2 in the case
h(x) = x. Red-dashed line indicates true MLE. Averaging after
£y = 30 iterations.
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The Particle-Based Rapid Incremental Smoother

General hidden Markov models (HMMs)

m A hidden Markov model (HMM) comprises
a Markov chain (Xk)k>o with transition density g, i.e.

X1 | X = X ~ G(Xkt1 | Xk),

which is hidden away from us but partially observed through
an observation process ( Yk)k>o such that conditionally on
the chain (Xk)kZOs
(i) the Yx’s are independent with
(i) conditional distribution of each Y depending on the
corresponding X only.
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The Particle-Based Rapid Incremental Smoother

General hidden Markov models (HMMs)

m A hidden Markov model (HMM) comprises
a Markov chain (Xk)k>o with transition density g, i.e.

X1 | X = X ~ G(Xkt1 | Xk),

which is hidden away from us but partially observed through
an observation process ( Yk)k>o such that conditionally on
the chain (Xk)kZOs
(i) the Yx’s are independent with
(i) conditional distribution of each Y depending on the
corresponding X only.

m The density of the conditional distribution
Yi | (Xi)k=0 = Yi | Xk will be denoted by p(yx | xk).
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The Particle-Based Rapid Incremental Smoother

General HMMs (cont.)

m Graphically:
Yi | Xk = Xk ~ p(Vk | Xk) (Observation density)

Xyt | Xk = Xk ~ q(Xka1 | Xk) (Transition density)
Xo ~ x(x0) (Initial distribution)

(Observations)

(Markov chain)
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The Particle-Based Rapid Incremental Smoother

The smoothing distribution

m In an HMM, the smoothing distribution f,(Xo.n | Yo.n) is the
conditional distribution of Xy., given Yo., = Vo.n-

Theorem (Smoothing distribution)

fo(Xon | Yon) = X(X0)P(yo | Xo)Hfianf’}”; | Xi)q(X | Xk—1)’

where

Ln(¥o.n) = density of the observations yy.,

— [ x00)p00 1 %0) T POk 10905 | %6-1) o
k=1
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The Particle-Based Rapid Incremental Smoother

The goal

m We wish, for n € N, to estimate the expected value
Tn = IE‘:f[hn(XO:n) | YO:n]7

under the smoothing distribution.
m Here hp(xo.p) is of additive form, that is

n—1
hn(Xo0:n) = Z hi(Xi.it1)-

i=0
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The Particle-Based Rapid Incremental Smoother

The goal

m We wish, for n € N, to estimate the expected value
Tn = IE‘:f[hn(XO:n) | YO:n]7

under the smoothing distribution.
m Here hp(xo.p) is of additive form, that is

n—1
hn(Xo0:n) = Z hi(Xi.it1)-

i=0

m For instance sufficient statistics which are needed for the
EM algorithm.
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The Particle-Based Rapid Incremental Smoother

Using basic SISR

m Given particles and weights {(X{.,,wh)}Y , targeting
f(Xo:n | Yo.n) we update this to estimate at time n+ 1 using
the following steps:

Selection: Draw indices {/}}}, ~ Mult({w/}} )
Mutation: Fori=1,...,Ndraw X/, ~ q(- | X[} and set
. Ii .
Xo:n1 = (Xl Xii1) ' '
Weighting: Fori=1,...,Nsetw) y = p(¥ni1 | X/ 1)-
Estimation: We estimate 7,1 using
N i

w .
~ o n+1 i
TnH1 = § N F; hni (XO:n+1)'
el Sy Wnid
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The Particle-Based Rapid Incremental Smoother

The problem of resampling

m We saw when comparing with the SIS algorithm that the
resampling was necessary to achieve a stable estimate.
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The Particle-Based Rapid Incremental Smoother

The problem of resampling

m We saw when comparing with the SIS algorithm that the
resampling was necessary to achieve a stable estimate.

m But the resampling also depletes the historical trajectories.

m There will be an integer k such that at time nin the
algorithm X} , = X! , for all i and j.
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The Particle-Based Rapid Incremental Smoother

Fixing the degeneracy

m The goal to fixing this problem is the following observation:
m Conditioned on the observations the hidden Markov chain
is also a Markov chain in the reverse direction.
m We denote the transition density of this Markov chain by
3(xk | Xk+1, Yo:k), this density can be written as

P f(Xk | Yo:k)Q(Xk41 | Xk)
Xk | X y YO:k) = .
q (Xi | Xk+1, Yo:k) THX | Your)q0xies | X)dx
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The Particle-Based Rapid Incremental Smoother

Fixing the degeneracy

m The goal to fixing this problem is the following observation:
m Conditioned on the observations the hidden Markov chain
is also a Markov chain in the reverse direction.
m We denote the transition density of this Markov chain by
3(xk | Xk+1, Yo:k), this density can be written as

P f(Xk | Yo:k)Q(Xk41 | Xk)
Xk | X y YO:k) = .
q (Xi | Xk+1, Yo:k) THX | Your)q0xies | X)dx

m Since we can estimate f(xx | yo.x) well using SISR we can
use the following particle approximation of the backward
distribution

w3 d (X1 | %)

5 : )
D it wﬁq(X{(+1 | le)

Ny/oi j
q "™ (X | X;l<+1,}’0:k) =
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The Particle-Based Rapid Incremental Smoother

Forward Filtering Backward Smoothing (FFBSm)

m Using this approximation of the transition density we get
the Forward Filtering Backward Smoothing algorithm.

m First we need to run the SISR algorithm and save all the
filter estimates {(x;,wj )}, for k =0,...,N.
m We then estimate 7, using

n—1

N N ]
i Z Z H w.lssq( .;SI; | X;s)
B ’s+1
=0

=1 I wha(x o1 | Xs)

Wn

Ze 1wn

v h (X0, X{1, ... xin)
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The Particle-Based Rapid Incremental Smoother

A Forward only version

m The previous algorithm requires two passes of the data,
first the forward filtering, then the backward smoothing.

m When working with functions of additive form it is possible
to perform smoothing in the following way.

m Introduce the auxiliary function T(x), which we define as
T(x) = E[hk(Xo:k) | Yok, Xk = X]
m We can update this function recursively by noting that
Tie1(X) = E[Te(Xk) + Bie(Xie, Xicr1) | Yok, Xiey1 = X,

that is the expected value of the previous function with the
next additive part under the backward distribution!
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The Particle-Based Rapid Incremental Smoother

Using this decomposition

m Given that we have estimates for the filter at time k,
{(xL,wl)}N,, and estimates of { Ti(x} )} ,.

m Propagate the filter estimates using one step of SISR
algorithm to get {(x} 1. wj, )}, nowfori=1,... N
estimate the function T 1(xj_ ) using

N o i J
' A1 | %) 0N B s
Thi1 (XII<+1) = K - (Tk(x) + h(x, XII<+1 )
; Zé\lﬂ wﬁq(XlI(H | X/é)
m 7.1 iS estimated using
N

) Wi
Tkt = E 7“ Th1 (Xk 1)
i—1 Zz 1wk+1
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The Particle-Based Rapid Incremental Smoother

Speeding up the Algorithm

m This algorithm works, but it is quite slow.
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The Particle-Based Rapid Incremental Smoother

Speeding up the Algorithm

m This algorithm works, but it is quite slow.

m |dea! Can we replace calculating the expected value with
an MC estimator? Can we sample sufficiently fast from the
backward distribution?

m Formally we wish to sample J such that given all particles
and weights at time k and k + 1 and an index i

P(J = j) = W{(Q(Xlim | Xﬁ)
S kG | XE)
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The Particle-Based Rapid Incremental Smoother

Speeding up the Algorithm

m This algorithm works, but it is quite slow.

m |dea! Can we replace calculating the expected value with
an MC estimator? Can we sample sufficiently fast from the
backward distribution?

m Formally we wish to sample J such that given all particles
and weights at time k and k + 1 and an index i

P(J = j) = W{(Q(Xlim | Xﬁ)
S kG | XE)

m We can do this efficiently using accept-reject sampling!
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The Particle-Based Rapid Incremental Smoother

The PaRIS algorithm

m Now we can describe the PaRIS algorithm.

m Given particles and weights {(x},w})}¥ , targeting the filter
distribution at time k. Together with values { Ti(x})}Y, estimating
Tk(x).

m We proceed by first taking one step using the SISR algorithm to get
particles and weights {(x;_ ;,w;, 1)}/, targeting the filter at time
k+1. }

m Fori=1,...,N we draw N indices {J"}}'_, from the previous slide
and calculate

i
. 1 i
Tt (X 1) = X > (Tk(XR’ ) + P (xi VX/(+1)>

=1
m The estimate of 7,1 is then given by

N i
w .
A o k+1 i
Tkt = E Ti1 (Xis1)

N 7
T D0t Dok
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The Particle-Based Rapid Incremental Smoother

The PaRIS algorithm (cont.)

m Using this algorithm we have an efficient algorithm for
online estimation of the expected value under the joint
smoothing distribution.

m We require the target function to be of additive form.

m The number of backward samples (N) needed in the
algorithm turns out to be 2.
m We can (under some additional assumptions) prove the
following:
m The computational complexity grows linearly with N.

m The estimate is asymptotically consistent.
m We can find a CLT for the error which behaves like 1/v/N.
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The Particle-Based Rapid Incremental Smoother

An Example, Paramter Estimation.

It turns out that the PaRIS algorithm can be used efficently
when performing online parameter estimation.

We tested our method on the stochastic volatility model
Xiy1 = Xt + o Vi,
Y = Bexp(X:/2) U,

where {V;}ieny and {U;}ien are independent sequences of
mutually independent standard Gaussian noise variables.

teN,

Parameters to be estimated are 6 = (¢, o2, 52).
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The Particle-Based Rapid Incremental Smoother

Parameter Estimation (cont.)

time x10°

5
time «10°

time x10°
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End of the course

m That is it for the lectures in this course. Hope you have
enjoyed it.

m Review of HA2 sent by mail to johawes@kth. se by 24
May 12:00:00

m Exam 30 May, 14:00:00 — 19:00:00
m Re-Exam 14 August, 08:00:00 — 13:00:00
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