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Last time: the EM algorithm

The algorithm goes as follows.
Data: Initial value θ0
Result: {θ`; ` ∈ N}
for `← 0,1,2, . . . do

set Qθ`(θ)← Eθ` (log fθ(X ,Y ) | Y );
set θ`+1 ← arg maxθ∈ΘQθ`(θ)

end

The two steps within the main loop are referred to as
expectation and maximization steps, respectively.
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Last time: the EM inequality

By rearranging the terms we obtain the following.

Theorem (the EM inequality)

For all (θ, θ′) ∈ Θ2 it holds that

`(θ)− `(θ′) ≥ Qθ′(θ)−Qθ′(θ′),

where the equality is strict unless fθ′(x | Y ) = fθ(x | Y ).

Thus, by the very construction of {θ`; ` ∈ N} it is made sure
that {`(θ`); ` ∈ N} is non-decreasing. Hence, the EM
algorithm is a monotone optimization algorithm.
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EM in exponential families

In order to be practically useful, the E- and M-steps of EM
have to be feasible. A rather general context in which this
is the case is the following.

Definition (exponential family)

The family {fθ(x , y); θ ∈ Θ} defines an exponential family if the
complete data likelihood is of form

fθ(x , y) = exp (ψ(θ)ᵀφ(x)− c(θ)) h(x),

where φ and ψ are (possibly) vector-valued functions on Rd and
Θ, respectively, and h is a non-negative real-valued function on
Rd . All these quantities may depend on y .
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EM in exponential families (cont’d)

The intermediate quantity becomes

Qθ′(θ) = ψ(θ)ᵀEθ′ (φ(x) | Y )− c(θ)

+ Eθ′ (log h(x) | Y )︸ ︷︷ ︸
(∗)

,

where (∗) does not depend on θ and may thus be ignored.
Consequently, in order to be able to apply EM we need

1 to be able to compute the smoothed sufficient statistics

τ = Eθ′ (φ(X ) | Y ) =

∫
φ(x)fθ′(x | Y ),

2 maximization of θ 7→ ψ(θ)ᵀτ − c(θ) to be feasible for all τ .
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Example: nonlinear Gaussian model

Let (yi)
n
i=1 be independent observations of a random

variable
Y = h(X ) + σyεy ,

where h is a possibly nonlinear function and

X = µ+ σxεx

is not observable. Here εx and εy are independent
standard Gaussian noise variables.
The parameters θ = (µ, σ2

x ) governing the distribution of
the unobservable variable X are unknown while it is known
that σy = .4.
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Example: nonlinear Gaussian model (cont.)

In this case the complete data likelihood belongs to an
exponential family with

φ(x1:n) =

(
n∑

i=1

x2
i ,

n∑
i=1

xi

)
, ψ(θ) =

(
− 1

2σ2
x
,
µ

σ2
x

)
,

and

c(θ) =
n
2

logσ2
x +

nµ2

2σ2
x
.

Letting τi = Eθ`(φi(X1:n) | Y1:n), i ∈ {1,2}, leads to

µ`+1 =
τ2

n
,

(σ2
x )`+1 =

τ1

n
− µ2

`+1.
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Example: nonlinear Gaussian model (cont.)

Since the “smoothed” sufficient statistics are of additive
form it holds that, e.g.,

τ1 = Eθ`

(
n∑

i=1

X 2
i | Y1:n

)
=

n∑
i=1

Eθ`
(

X 2
i | Yi

)
(and similarly for τ2).
However, computing expectations under

fθ`(xi | yi) ∝ exp

(
− 1

2(σ2
y )`
{yi − h(xi)}2 −

1
2σ2

y
{xi − µ`}

)
is in general infeasible (i.e. when the transformation h is a
general nonlinear function).
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Example: nonlinear Gaussian model (cont.)

Thus, within each iteration of EM we sample each
component fθ`(xi | yi) using MH.
For simplicity we use the independent proposal
r(xi) = fθ`(xi), yielding the MH acceptance probability

α(X (k)
i ,X ∗i ) = 1 ∧

fθ`(Yi | X ∗i )

fθ`(Yi | X
(k)
i )

=

1∧exp

(
− 1

2(σ2
y )`
{h2(X ∗i )− h2(X (k)

i ) + 2Yi(h(X (k)
i )− h(X ∗i ))}2

)
.
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Example: nonlinear Gaussian model (cont.)

Data: Initial value θ0; Y1:n
Result: {θ`; ` ∈ N}
for `← 0,1,2, . . . do

set τ̂j ← 0, ∀j ;
for i ← 1, . . . ,n do

run an MH sampler targeting fθ`(xi | Yi) ; (X (k)
i )N`

k=1;
set τ̂1 ← τ̂1 +

∑N`
k=1(X (k)

i )2/N`;
set τ̂2 ← τ̂2 +

∑N`
k=1 X (k)

i /N`;
end
set µ`+1 ← τ̂2/n;
set (σ2

x )`+1 ← τ̂1/n − µ2
`+1;

end
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Example: nonlinear Gaussian model (cont.)

In order to assess the performance of this Monte Carlo EM
algorithm we focus on the linear case, h(x) = x .
A data record comprising n = 40 values was produced by
simulation under (µ∗, σ∗x ) = (1, .4) with σy = .4.
In this case, the true MLE is known and given by (check
this!)

µ̂(Y1:n) =
1
n

n∑
i=1

Yi = 1.04,

σ̂2
x (Y1:n) =

1
n

n∑
i=1

{Yi − µ̂(Y1:n)}2 − .42 = .27.
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Example: nonlinear Gaussian model (cont.)
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Figure: EM learning trajectory (blue curve) for µ in the case h(x) = x .
Red-dashed line indicates true MLE. N` = 200 for all iterations.
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Example: nonlinear Gaussian model (cont.)
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Figure: EM learning trajectory (blue curve) for σ2
x in the case h(x) = x .

Red-dashed line indicates true MLE. N` = 200 for all iterations.

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (15)



logga

Last time: the EM algorithm An Introduction to my Research

Averaging

Roughly, for the MCEM algorithm one may prove that the
variance of θ` − θ̂ (where θ̂ is the MLE) is of order 1/N`.
In the idealised situation where the estimates (θ`)` are
uncorrelated (which is not the case here) one may obtain
an improved estimator of θ̂ by combining the individual
estimates θ` in proportion of the inverse of their variance.
Starting the averaging at iteration `0 leads to

θ̃` =
∑̀
`∗=`0

N`∗∑`
`′=`0

N`′
θ`∗ , ` ≥ `0.

In the idealised situation the variance of θ̃` decreases as
1/
∑`

`′=`0
N`′ (= total number of simulations).

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (16)



logga

Last time: the EM algorithm An Introduction to my Research

Example: nonlinear Gaussian model (cont.)
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Figure: EM learning trajectory (blue curve) for µ in the case h(x) = x .
Red-dashed line indicates true MLE. Averaging after `0 = 30
iterations.
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Example: nonlinear Gaussian model (cont.)
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Figure: EM learning trajectory (blue curve) for σ2
x in the case

h(x) = x . Red-dashed line indicates true MLE. Averaging after
`0 = 30 iterations.
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The Particle-Based Rapid Incremental Smoother

General hidden Markov models (HMMs)

A hidden Markov model (HMM) comprises
1 a Markov chain (Xk )k≥0 with transition density q, i.e.

Xk+1 | Xk = xk ∼ q(xk+1 | xk ),

which is hidden away from us but partially observed through
2 an observation process (Yk )k≥0 such that conditionally on

the chain (Xk )k≥0,
(i) the Yk ’s are independent with
(ii) conditional distribution of each Yk depending on the

corresponding Xk only.

The density of the conditional distribution
Yk | (Xk )k≥0

d.
= Yk | Xk will be denoted by p(yk | xk ).
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The Particle-Based Rapid Incremental Smoother

General HMMs (cont.)

Graphically:

"!
# 
"!
# 
"!
# 

"!
# 
"!
# 
"!
# 

Yk−1 Yk Yk+1

Xk−1 Xk Xk+1- - - -

6 6 6

... ... (Markov chain)

(Observations)

Yk | Xk = xk ∼ p(yk | xk ) (Observation density)
Xk+1 | Xk = xk ∼ q(xk+1 | xk ) (Transition density)

X0 ∼ χ(x0) (Initial distribution)
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The Particle-Based Rapid Incremental Smoother

The smoothing distribution

In an HMM, the smoothing distribution fn(x0:n | y0:n) is the
conditional distribution of X0:n given Y0:n = y0:n.

Theorem (Smoothing distribution)

fn(x0:n | y0:n) =
χ(x0)p(y0 | x0)

∏n
k=1 p(yk | xk )q(xk | xk−1)

Ln(y0:n)
,

where

Ln(y0:n) = density of the observations y0:n

=

∫
χ(x0)p(y0 | x0)

n∏
k=1

p(yk | xk )q(xk | xk−1) dx0:n.
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The Particle-Based Rapid Incremental Smoother

The goal

We wish, for n ∈ N, to estimate the expected value

τn = E[hn(X0:n) | Y0:n],

under the smoothing distribution.
Here hn(x0:n) is of additive form, that is

hn(x0:n) =
n−1∑
i=0

h̃i(xi:i+1).

For instance sufficient statistics which are needed for the
EM algorithm.
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The Particle-Based Rapid Incremental Smoother

Using basic SISR

Given particles and weights {(X i
0:n, ω

i
n)}Ni=1 targeting

f (x0:n | y0:n) we update this to estimate at time n + 1 using
the following steps:

Selection: Draw indices {I i
n}N

i=1 ∼ Mult({ωi
n}N

i=1)

Mutation: For i = 1, . . . ,N draw X i
n+1 ∼ q(· | X I i

n
n ) and set

X i
0:n+1 = (X I i

n
0:n,X

i
n+1)

Weighting: For i = 1, . . . ,N set ωi
n+1 = p(yn+1 | X i

n+1).
Estimation: We estimate τn+1 using

τ̂n+1 =
N∑

i=1

ωi
n+1∑N

`=1 ω
`
n+1

hn+1(X i
0:n+1).
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The Particle-Based Rapid Incremental Smoother

The problem of resampling

We saw when comparing with the SIS algorithm that the
resampling was necessary to achieve a stable estimate.
But the resampling also depletes the historical trajectories.
There will be an integer k such that at time n in the
algorithm X i

0:k = X j
0:k for all i and j .
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The Particle-Based Rapid Incremental Smoother

Fixing the degeneracy

The goal to fixing this problem is the following observation:
Conditioned on the observations the hidden Markov chain
is also a Markov chain in the reverse direction.
We denote the transition density of this Markov chain by←−q (xk | xk+1, y0:k ), this density can be written as

←−q (xk | xk+1, y0:k ) =
f (xk | y0:k )q(xk+1 | xk )∫
f (x ′ | y0:k )q(xk+1 | x ′)dx ′

.

Since we can estimate f (xk | y0:k ) well using SISR we can
use the following particle approximation of the backward
distribution

←−q N(x i
k | x

j
k+1, y0:k ) =

ωi
k q(x j

k+1 | x i
k )∑N

`=1 ω
`
k q(x j

k+1 | x`k )
.
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The Particle-Based Rapid Incremental Smoother

Forward Filtering Backward Smoothing (FFBSm)

Using this approximation of the transition density we get
the Forward Filtering Backward Smoothing algorithm.
First we need to run the SISR algorithm and save all the
filter estimates {(x i

k , ω
i
k )}Ni=1 for k = 0, . . . ,N.

We then estimate τn using

τ̂n =
N∑

i0=1

· · ·
N∑

in=0

n−1∏
s=0

ωis
s q(x is+1

s+1 | x
is
s )∑N

`=1 ω
`
sq(x is+1

s+1 | x`s)

× ωin
n∑N

`=1 ω
`
n

hn(x i0
0 , x

i1
1 , . . . , x

in
n )
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The Particle-Based Rapid Incremental Smoother

A Forward only version

The previous algorithm requires two passes of the data,
first the forward filtering, then the backward smoothing.
When working with functions of additive form it is possible
to perform smoothing in the following way.

Introduce the auxiliary function Tk (x), which we define as

Tk (x) = E[hk (X0:k ) | Y0:k ,Xk = x ]

We can update this function recursively by noting that

Tk+1(x) = E[Tk (Xk ) + h̃k (Xk ,Xk+1) | Y0:k ,Xk+1 = x ],

that is the expected value of the previous function with the
next additive part under the backward distribution!
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The Particle-Based Rapid Incremental Smoother

Using this decomposition

Given that we have estimates for the filter at time k ,
{(x i

k , ω
i
k )}Ni=1, and estimates of {Tk (x i

k )}Ni=1.
Propagate the filter estimates using one step of SISR
algorithm to get {(x i

k+1, ω
i
k+1)}Ni=1, now for i = 1, . . . ,N

estimate the function Tk+1(x i
k+1) using

Tk+1(x i
k+1) =

N∑
j=1

ωj
kq(x i

k+1 | x
j
k )∑N

`=1 ω
`
kq(x i

k+1 | x`k )
(Tk (x j

k ) + h̃(x j
k , x

i
k+1))

τk+1 is estimated using

τ̂k+1 =
N∑

i=1

ωi
k+1∑N

`=1 ω
`
k+1

Tk+1(x i
k+1)
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The Particle-Based Rapid Incremental Smoother

Speeding up the Algorithm

This algorithm works, but it is quite slow.
Idea! Can we replace calculating the expected value with
an MC estimator? Can we sample sufficiently fast from the
backward distribution?
Formally we wish to sample J such that given all particles
and weights at time k and k + 1 and an index i

P(J = j) =
ωj

kq(x i
k+1 | x

j
k )∑N

`=1 ω
`
kq(x i

k+1 | x`k )

We can do this efficiently using accept-reject sampling!
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The Particle-Based Rapid Incremental Smoother

The PaRIS algorithm

Now we can describe the PaRIS algorithm.
Given particles and weights {(x i

k , ω
i
k )}N

i=1 targeting the filter
distribution at time k . Together with values {Tk (x i

k )}N
i=1 estimating

Tk (x).
We proceed by first taking one step using the SISR algorithm to get
particles and weights {(x i

k+1, ω
i
k+1)}n

i=1 targeting the filter at time
k + 1.
For i = 1, . . . ,N we draw Ñ indices {J i′}Ñ

i′=1 from the previous slide
and calculate

Tk+1(x i
k+1) =

1
Ñ

Ñ∑
i′=1

(
Tk (xJ i′

k ) + h̃k (xJ i′

k , x i
k+1)

)
The estimate of τk+1 is then given by

τ̂k+1 =
N∑

i=1

ωi
k+1∑N

`=1
∑`

k+1

Tk+1(x i
k+1)
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The Particle-Based Rapid Incremental Smoother

The PaRIS algorithm (cont.)

Using this algorithm we have an efficient algorithm for
online estimation of the expected value under the joint
smoothing distribution.
We require the target function to be of additive form.
The number of backward samples (Ñ) needed in the
algorithm turns out to be 2.
We can (under some additional assumptions) prove the
following:

The computational complexity grows linearly with N.
The estimate is asymptotically consistent.
We can find a CLT for the error which behaves like 1/

√
N.
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The Particle-Based Rapid Incremental Smoother

An Example, Paramter Estimation.

It turns out that the PaRIS algorithm can be used efficently
when performing online parameter estimation.

We tested our method on the stochastic volatility model

Xt+1 = φXt + σVt+1,

Yt = β exp(Xt/2)Ut ,
t ∈ N,

where {Vt}t∈N and {Ut}t∈N are independent sequences of
mutually independent standard Gaussian noise variables.

Parameters to be estimated are θ = (φ, σ2, β2).
Johan Westerborn KTH Royal Institute of Technology
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The Particle-Based Rapid Incremental Smoother

Parameter Estimation (cont.)

time
×10

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

φ

-1

-0.5

0

0.5

1

time
×10

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

σ
2

0

0.1

0.2

0.3

0.4

0.5

0.6

time
×10

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β
2

0

0.5

1

1.5

2

PaRIS-based RMLJohan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (35)



logga

Last time: the EM algorithm An Introduction to my Research

End of the course

That is it for the lectures in this course. Hope you have
enjoyed it.
Review of HA2 sent by mail to johawes@kth.se by 24
May 12:00:00
Exam 30 May, 14:00:00 – 19:00:00
Re-Exam 14 August, 08:00:00 – 13:00:00
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