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Last time: Principal aim

We formulated the main problem of the course, namely to
compute some expectation

τ = E(φ(X )) =

∫
X
φ(x)f (x)dx ,

where
X is a random variable taking values in X ⊆ Rd (where
d ∈ N∗ may be very large),
f : X→ R+ is the probability density (target density) of X ,
and
φ : X→ R is a function (objective function) such that the
above expectation exists.
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Last time: The MC method in a nutshell

Let X 1,X 2, . . . ,X N be independent random variables with
density f . Then, by the law of large numbers, as N tends to
infinity,

τN
def
=

1
N

N∑
i=1

φ(X i)→ E(φ(X )). (a.s.)

Inspired by this result, we formulated the basic MC sampler:
for i = 1→ N do

draw X i ∼ f ;
end
set τN ←

∑N
i=1 φ(X

i)/N;
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Some properties of MC estimators

We note that τN is unbiased in the sense that for all N,

E(τN) = E

(
1
N

N∑
i=1

φ(X i)

)
=

1
N

N∑
i=1

E(φ(X i)) = τ.

In addition, as we saw last time, the variance of τN is

V(τN) =
1
N
σ2(φ)⇒ D(τN) =

1√
N
σ(φ).

Finally, the CLT implies that the normalized MC error is
asymptotically normally distributed:

√
N (τN − τ)

d.−→ N(0, σ2(φ)), as N →∞,
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What do we need to know?

OK, so what do we need to master for having practical use
of the MC method?
We agreed on that, for instance, the following questions
should be answered:

How do we generate the needed input random variables?
How many computer experiments should we do? What can
be said about the error?
Can we exploit problem structure to speed up the
computation?

Today we will discuss the first two issues.
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Plan of today’s lecture
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Plug-in MC estimators

For a given estimand τ one is often interested in estimating
ϕ(τ) for some function ϕ : R→ R. For instance, one may
be interested in the squared expectation ϕ(τ) = τ2.
Question: what are the properties of the plug-in estimator
ϕ(τN) of ϕ(τ)?
The estimator ϕ(τN) is generally biased for finite N; indeed,
under suitable assumptions on ϕ it holds that

E (ϕ(τN)− ϕ(τ)) =
ϕ′′(τ)

2
V(τN) + O(N−3/2)

=
ϕ′′(τ)σ2(φ)

2N
+ O(N−3/2),

implying that ϕ(τN) is still consistent.
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The delta method

In addition, one may establish the CLT
√

N (ϕ(τN)− ϕ(τ))
d.−→ N(0, ϕ′(τ)2σ2(φ)), as N →∞,

which implies that the standard deviation of the plug-in
estimator is obtained by simply scaling the standard
deviation of the original estimator by ϕ′(τ).
This will be discussed further during the first exercise class.
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Confidence bounds

Using the CLT one obtains straightforwardly the two-sided
confidence bound

Iα =

(
τN − λα/2

σ(φ)√
N
, τN + λα/2

σ(φ)√
N

)
,

for τ , where λp denotes the p-quantile of the standard
normal distribution.
Iα covers τ with (approximate) probability 1− α.
A problem here is that σ2(φ) is generally not known.
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Confidence bounds (cont.)

Quick fix: the variance σ2(φ) is again an expectation that
can be estimated using the already generated MC sample
(X i)N

i=1. More specifically, using the plug-in estimator,

σ2(φ) = E(φ2(X ))− E (φ(X ))2 = E(φ2(X ))− τ2

≈ 1
N

N∑
i=1

φ2(X i)− τ2
N =

1
N

N∑
i=1

(
φ(X i)− τN

)2
.

This estimator has however bias. A bias-corrected
estimator (in MATLAB: var alt. std) is

σ2
N(φ)

def
=

1
N − 1

N∑
i=1

(
φ(X i)− τN

)2
.
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Example: Buffon’s needle

Consider a grid of parallel lines of spacing d on which we
drop randomly a needle of length `, with ` ≤ d . Let{

X = distance from lower needlepoint to upper grid line,
θ = angle between needle and grid normal ∈ (−π/2, π/2).

Then

τ = P (needle intersects grid) = P(X ≤ ` cos θ) = . . . =
2`
πd

or, equivalently,

π = ϕ(τ) =
2`
τd

.
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Example: Buffon’s needle (cont.)

Since

τ = P (needle intersects grid) = E
(
1{X≤` cos θ}

)
,

we may obtain an approximation of π through

X = d*rand(1,N);
theta = - pi/2 + pi*rand(1,N);
tau = mean(X <= L*cos(theta));

and then letting pi_est = 2*L./(tau*d).
In addition, a 95% confidence interval is obtained through

sigma = std(X <= L*cos(theta));
LB = pi_est - norminv(0.975)*2*L/(d*tau^2*sqrt(N))*sigma;
UB = pi_est + norminv(0.975)*2*L/(d*tau^2*sqrt(N))*sigma;

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (14)



logga

Plug-in MC estimators MC output analysis Generating random numbers Summary

Example: Buffon’s needle (cont.)

Since

τ = P (needle intersects grid) = E
(
1{X≤` cos θ}

)
,

we may obtain an approximation of π through

X = d*rand(1,N);
theta = - pi/2 + pi*rand(1,N);
tau = mean(X <= L*cos(theta));

and then letting pi_est = 2*L./(tau*d).
In addition, a 95% confidence interval is obtained through

sigma = std(X <= L*cos(theta));
LB = pi_est - norminv(0.975)*2*L/(d*tau^2*sqrt(N))*sigma;
UB = pi_est + norminv(0.975)*2*L/(d*tau^2*sqrt(N))*sigma;

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (14)



logga

Plug-in MC estimators MC output analysis Generating random numbers Summary

Example: Buffon’s needle (cont.)

Here we are actually cheating, since we require the value
of π in our simulation code. . .
As we will see later this lecture and during the first exercise
class, it is however possible to simulate cos(θ) directly by
using only U(0,1) random numbers.
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Example: Buffon’s needle (cont.)

Executing this code for N = 1:10:1000 yields the following
graph (where the red-dashed lines are confidence bounds):
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”Random”?! . . .

Laplace’s demon:

“We may regard the present state of the universe as the effect of its
past and the cause of its future. An intellect which at a certain moment
would know all forces that set nature in motion, and all positions of all
items of which nature is composed, if this intellect were also vast
enough to submit these data to analysis, it would embrace in a single
formula the movements of the greatest bodies of the universe and those
of the tiniest atom; for such an intellect nothing would be uncertain and
the future just like the past would be present before its eyes.”

–P.-S. Laplace, Essai philosophique sur les probabilités, 1814

Expresses determinism.
The possibility of Laplace’s demon is a fundamental
question in philosophy.
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Generating pseudo-random numbers

Pseudo-random numbers = numbers exhibiting statistical
randomness while being generated by a deterministic
process.
We will discuss

how to generate pseudo-random uniform numbers,
transformation and inversion methods,
rejection sampling, and
conditional methods.
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Good pseudo-random numbers

“Good” pseudo-random numbers
appear to come from the correct distribution (also in the
tails),
have long periodicity,
look “independent”, and
are fast to generate.

Most standard computing languages have packages or
functions that generate either U(0,1) random numbers or
integers on U(0,232 − 1):

rand and unifrnd in MATLAB,
rand in C/C++,
Random in Java.

Johan Westerborn KTH Royal Institute of Technology
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Uniform pseudo-random numbers
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Uniform pseudo-random numbers

Linear congruential generator

The linear congruential generator is a simple, fast, and
popular way of generating pseudo-random numbers:

Xn = (a · Xn−1 + c) mod m,

where a, c, and m are integers.
This recursion generates integer numbers (Xn) in
[0,m − 1]. These are mapped to (0,1) through division by
m. It turns out that the period of the generator is m if

(i) c and m are relatively prime,
(ii) a− 1 is divisible by all prime factors of m, and
(iii) a− 1 is divisible by 4 if m is divisible by 4.

As an example, MATLAB (pre v. 5) uses m = 232 − 1,
a = 75 = 16807, and c = 0.

Johan Westerborn KTH Royal Institute of Technology
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Transformation-based methods

Bijective transformations of random variables

Let X be a stochastic variable with density fX on X ⊆ R and
let g : X→ Y ⊆ R be some differentiable, strictly increasing
function with inverse g−1.
Define Y = g(X ) and let fY denote the density of Y . We
show that

fY (y) = fX (g−1(y))
d
dy

g−1(y) (y ∈ Y).

In the case where g is strictly decreasing we may argue
similarly, and it holds generally that

fY (y) = fX (g−1(y))
∣∣∣∣ d
dy

g−1(y)
∣∣∣∣ (y ∈ Y)

for a strictly monotone function g.
Johan Westerborn KTH Royal Institute of Technology
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Transformation-based methods

The transformation theorem

Now, let X be n-dimensional, i.e., X ⊆ Rn, g : X→ Y ⊆ Rn

a bijection, and set

Y =


Y1
Y2
...

Yn

 = g(X ) =


g1(X1, . . . ,Xn)
g2(X1, . . . ,Xn)

...
gn(X1, . . . ,Xn)

⇔

X =


X1
X2
...

Xn

 = g−1(Y ) =


h1(Y1, . . . ,Yn)
h2(Y1, . . . ,Yn)

...
hn(Y1, . . . ,Yn)

 .

Johan Westerborn KTH Royal Institute of Technology
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Transformation-based methods

The transformation theorem (cont.)

Generally, the following holds true.

Theorem (the transformation theorem)
The density of Y is

fY (y) =

{
fX (h1(y),h2(y), . . . ,hn(y)) |J(y)| if y ∈ Y,
0 otherwise.

where J(y) is the Jacobian matrix, i.e.,

J(y) =


∂
∂y1

h1(y) ∂
∂y2

h1(y) · · · ∂
∂yn

h1(y)
...

...
. . .

...
∂
∂y1

hn(y) ∂
∂y2

hn(y) · · · ∂
∂yn

hn(y)

 .
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Transformation-based methods

Example: Buffon’s needle (again)

In order to simulate cos(θ), where θ ∼ U(−π/2, π/2), we
may generate repeatedly independent U1 ∼ U(−1,1) and
U2 ∼ U(0,1) until

U2
1 + U2

2 ≤ 1

and then return
Y =

U1√
U2

1 + U2
2

Using the transformation theorem, one may the show that

Y | {U2
1 + U2

2 ≤ 1} d.
= cos(θ).

Johan Westerborn KTH Royal Institute of Technology
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Transformation-based methods

The inversion method

The transformation theorem can be used for generating
random variables being functions of easily-simulated
variables.
In particular, we now assume that we have access to a
U(0,1) pseudo-random number generator and want to
generate a random number X from some univariate
distribution with a distribution function F whose inverse
F−1 is at hand.
For this purpose, we proceed as follows:
draw U ∼ U(0,1);
set X ← F−1(U);

Johan Westerborn KTH Royal Institute of Technology
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Transformation-based methods

The inversion method, remarks

Then the following is a consequence of the transformation
theorem:

Theorem (the inverse method)
The output X of the algorithm above has distribution function F .

The previous result holds can be extended to the
generalized inverse

F←(u) def
= inf{x ∈ R : F (x) ≥ u}.

If F is continuous and strictly increasing, then F← = F−1.
The method is limited to cases where

we want to generate univariate random numbers and
the generalized inverse F← is easy to evaluate (which is far
from always the case).
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Transformation-based methods

Example: exponential distribution

We use the inverse method for generating exponentially
distributed random numbers (with unit expectation). Recall
that this distribution has density

f (x) = e−x ⇒ F (x) =
∫ x

0
f (z)dz = 1− e−x (x ≥ 0).

Taking the inverse yields

F (x) = 1−e−x = u ⇔ x = F−1(u) = − log(1−u) (u ∈ (0,1)).

Johan Westerborn KTH Royal Institute of Technology
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Transformation-based methods

Example: exponential distribution

F_inv = @(y) - log(1 - y);
U = rand(1,20);
X = F_inv(U);
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Summary

Today we have
shown that plug-in estimator ϕ(τN) of ϕ(τ) is
asymptotically consistent,
discussed how to construct confidence intervals of the MC
estimates using the CLT,
shown how to generate pseudo-random numbers using

the linear congruential generator (for uniform random
numbers) and
the inversion method (when the general inverse F← of F is
obtainable).
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