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Last time: the delta method

For a given estimand τ one is often interested in estimating
ϕ(τ) for some function ϕ : R→ R.
For this purpose, we simply used the plug-in estimator
ϕ(τN) of ϕ(τ).
The estimator ϕ(τN) is generally biased for finite N; indeed,
under suitable assumptions on ϕ it holds that

E (ϕ(τN)− ϕ(τ)) =
ϕ′′(τ)σ2(φ)

2N
+ O(N−3/2).

In addition, one may establish the CLT
√

N (ϕ(τN)− ϕ(τ))
d.−→ N(0, ϕ′(τ)2σ2(φ)), as N →∞.
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Last time: MC output analysis (Ch. 4)

We used the CLT
√

N (τN − τ)
d.−→ N(0, σ2(φ))

to target τ by the approximate confidence interval

Iα =

(
τN ± λα/2

σ(φ)√
N

)
.

Moreover, the delta method provides the approximate
confidence interval

Iα =

(
ϕ(τN)± λα/2|ϕ′(τN)|

σ(φ)√
N

)
for ϕ(τ).
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Last time: pseudo-random number generation (Ch. 3)

We discussed (briefly) how to generate pseudo-random
uniformly distributed numbers (Un) using the linear
congruential generator

Un = (a · Un−1 + c) mod m.

Having at hand such U(0,1)-distributed numbers U, we
also looked at how to generate pseudo-random numbers X
from an arbitrary distribution F by means of the inversion
method, i.e., by letting

X = F←(U) = inf{x ∈ R : F (x) ≥ U}.
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Last time: the inversion method

Then the following holds true:

Theorem (the inverse method)
The output X of the algorithm above has distribution function F .

If F is continuous and strictly increasing, then F← = F−1.
The method is limited to cases where

we want to generate univariate random numbers and
the generalized inverse F← is easy to evaluate (which is far
from always the case).
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Rejection sampling

The inversion method looks promising, but what do we do
if, e.g., f (x) ∝ exp(cos2(x)), x ∈ (−π/2, π/2)? Here we
cannot find an inverse and do not even know the
normalizing constant. /
This is a very common situation in statistics.
The following (somewhat magic!) algorithm saves the day.
Let g be a density or probability function on the same state
space X (⊆ Rd ) as f and assume that there exists a
constant K <∞ such that

f (x) ≤ Kg(x) ∀x ∈ X.

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (9)



logga

Last time Rejection sampling Importance sampling (IS) Self-normalized IS

Rejection sampling

The inversion method looks promising, but what do we do
if, e.g., f (x) ∝ exp(cos2(x)), x ∈ (−π/2, π/2)? Here we
cannot find an inverse and do not even know the
normalizing constant. /
This is a very common situation in statistics.
The following (somewhat magic!) algorithm saves the day.
Let g be a density or probability function on the same state
space X (⊆ Rd ) as f and assume that there exists a
constant K <∞ such that

f (x) ≤ Kg(x) ∀x ∈ X.

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (9)



logga

Last time Rejection sampling Importance sampling (IS) Self-normalized IS

Rejection sampling (cont.)

We proceed as follows:
set accepted← false;
while accepted = false do

draw X ∗ ∼ g;
draw U ∼ U(0,1);
if U ≤ f (X∗)

Kg(X∗) then
X ← X ∗;
accepted← true;

end
end
return X
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Rejection sampling (cont.)

The following holds true:

Theorem (rejection sampling)

The output X of the rejection sampling algorithm has density
function f .

Moreover:

Theorem
The expected number of trials needed before acceptance is K .

Consequently, the upper bound K should be chosen as
small as possible.
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Rejection sampling (cont.)

The following holds true:
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Example

We wish to simulate from f (x) = exp(cos2(x))/c,
x ∈ (−π/2, π/2), where c =

∫ π/2
−π/2 exp(cos2(z))dz is the

unknown normalizing constant.
However, since for all x ∈ (−π/2, π/2),

f (x) =
exp(cos2(x))

c
≤ e

c
=

eπ
c︸︷︷︸
K

× 1
π︸︷︷︸
g

,

where g is the density of U(−π/2, π/2), we may use
rejection sampling where a candidate X ∗ ∼ U(−π/2, π/2)
is accepted if

U ≤ f (X ∗)
Kg(X ∗)

=
exp(cos2(X ∗))/c

e/c
= exp(cos2(X ∗)− 1).
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Example

In MATLAB:

prob = @(x) exp((cos(x))^2 - 1);
trial = 1;
accepted = false;
while ~accepted,

Xcand = - pi/2 + pi*rand;
if rand < prob(Xcand),

accepted = true;
X = Xcand;

else
trial = trial + 1;

end
end
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Example
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f(x) = exp(cos2(x))/c

Figure: Plot of a histogram of 20,000 accept-reject draws together
with the true density. The average number of trials was 1.5555. In this
case the expected number is πe/c = 1.5503.
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Advantages of the MC method

The MC method
is more efficient than deterministic methods in high
dimensions,
does generally not require knowledge of the normalizing
constant of a density f for computing expectations, and
handles efficiently “strange” integrands φ that may cause
problems for deterministic methods.
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Problems with MC integration

OK, MC integration looks promising. We may however run
into problems if

it is hard to sample from f or
if the integrand φ and the density f are dissimilar; in this
case we will end of with a lot of draws where the integrand
is small, and consequently only a few draws will contribute
to the estimate. This gives a large variance.
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Here importance sampling is useful!
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Importance sampling (IS, Ch. 4.1)

The basis of importance sampling is to take an
instrumental density g on X such that g(x) = 0⇒ f (x) = 0
and rewrite the expectation as

τ = Ef (φ(X )) =

∫
X
φ(x)f (x)dx =

∫
f (x)>0

φ(x)f (x)dx

=

∫
g(x)>0

φ(x)
f (x)
g(x)

g(x)dx = Eg

(
φ(X )

f (X )

g(X )

)
= Eg (φ(X )ω(X )) ,

where we have defined the importance weight function

ω : {x ∈ X : g(x) > 0} 3 x 7→ f (x)
g(x)

.
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Importance sampling (cont.)

Now estimate τ = Eg(φ(X )ω(X )) using standard MC:
for i = 1→ N do

draw X i ∼ g;
end
set τN ←

∑N
i=1 φ(X

i)ω(X i)/N;
return τN

Here, trivially,

V(τN) =
1
N
Vg(φ(X )ω(X )),

and we should thus aim at choosing g so that the function
x 7→ φ(x)ω(x) is close to constant in the support of g. This
gives a minimal variance.
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Example: a tricky normal expectation

Let X be N(2,1)-distributed and consider

τ = E
(
1X≥0

√
X exp(−X 3)

)
=

∫
1x≥0

√
x exp(−x3)︸ ︷︷ ︸
=φ(x)

N(x ;2,1)︸ ︷︷ ︸
=f (x)

dx ,
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Example: a tricky normal expectation (cont.)

Thus, standard MC will lead to a waste of computational
power. Better is to use IS with g being a
scale-location-transformed student’s t-distribution with,
say, ν = 3 degrees of freedom:
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Example: A tricky normal expectation (cont.)

The standard deviation is estimated via the full width at half
maximum (FWHM) for a Gaussian bell:

FWHM = standard deviation × 2
√

2 log 2.

In MATLAB:

phi = @(x) (x >= 0).*sqrt(x).*exp(- x.^3);
mu = 0.75;
sigma = 1.2/(2*sqrt(2*log(2)));
v = 3;
s = sigma*sqrt((v - 2)/v);
X = s*trnd(v,1,N) + mu;
omega = @(x) normpdf(x,2,1)./(tpdf((x - mu)/s,v)/s);
tau = mean(phi(X).*omega(X));

Johan Westerborn KTH Royal Institute of Technology
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Example: A tricky normal expectation (cont.)

Executing the IS algorithm and standard MC in parallel
yields the following:
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Self-normalized IS (Ch. 4.1.1)

Often f (x) is known only up to a normalizing constant
c > 0, i.e. f (x) = z(x)/c, where we can evaluate
z(x) = cf (x) but not f (x). Then, as before, letting now
ω(x) = cf (x)/g(x) = z(x)/g(x),

τ = Ef (φ(X )) =

∫
X
φ(x)f (x)dx =

c
∫

f (x)>0 φ(x)f (x)dx

c
∫

f (x)>0 f (x)dx

=

∫
g(x)>0 φ(x)

cf (x)
g(x) g(x)dx∫

g(x)>0
cf (x)
g(x) g(x)dx

=

∫
g(x)>0 φ(x)ω(x)g(x)dx∫

g(x)>0 ω(x)g(x)dx

=
Eg(φ(X )ω(X ))

Eg(ω(X ))
.
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Self-normalized IS (cont.)

Since ω(x) = z(x)/g(x) can be evaluated for each x , we
may now estimate the ratio

τ =
Eg(φ(X )ω(X ))

Eg(ω(X ))

by solving one MC problem for the numerator and another
for the denominator.
Note that since c = Eg(ω(X )), this approach provides, as a
by-product, an estimate also of the normalizing constant c.
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Self-normalized IS (cont.)
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Example

We reconsider the density

f (x) = exp(cos2(x))/c, x ∈ (−π/2, π/2),

treated previously and estimate its variance as well as the
normalizing constant c > 0 using self-normalized IS.
Let the instrumental distribution g be the uniform
distribution U(−π/2, π/2).
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Example (cont.)

In MATLAB:

z = @(x) exp(cos(x).^2);
X = - pi/2 + pi*rand(1,N);
omega = @(x) pi*z(x);
tau = cumsum(X.^2.*omega(X))./cumsum(omega(X));
c = cumsum(omega(X))./(1:N);
subplot(2,1,1);
plot(1:N,c);
subplot(2,1,2);
plot(1:N,tau);
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Example (cont.)

Plotting the outcome:
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IS⇒ representation of f

The weighted sample (X i , ω(X i)) can be viewed as a discrete
MC representation of the target distribution f .
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E1

E1 comprises problems on
random number generation (transformation-based
methods, the inverse method, rejection sampling),
MC/IS (power production of a wind turbine),
Plug-in MC estimators and the delta method.
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