Computer Intensive Methods in Mathematical
Statistics

Johan Westerborn

Department of mathematics
KTH Royal Institute of Technology
johawes@kth.se

Lecture 3

Importance sampling
24 March 2017

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (1)



Plan of today’s lecture

Last time

Rejection sampling

Importance sampling (IS)

Self-normalized 1S

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (2)



Last time

Outline

Last time

an Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (3)



Last time

Last time: the delta method

m For a given estimand 7 one is often interested in estimating
¢(7) for some function ¢ : R — R.

m For this purpose, we simply used the plug-in estimator
p(mn) of o (7).

m The estimator ¢(7n) is generally biased for finite N; indeed,
under suitable assumptions on ¢ it holds that

P(1)26) | oo
E (o) — ¢()) = 0 4 O(N-92)

m |n addition, one may establish the CLT
VN (p(mn) = @(7)) = N(0, ¢'(7)?0%(¢)), as N — oo.
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Last time

Last time: MC output analysis (Ch. 4)

m We used the CLT
VN (rn —7) = N(0,0%(9))
to target 7 by the approximate confidence interval
0(¢>)>
lo = + Ay o—— .
<7'N /2 JN

m Moreover, the delta method provides the approximate
confidence interval

lo = (sO(TN) + Aa/2!<p’(ﬂv)!Uf}i})
for (7).
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Last time

Last time: pseudo-random number generation (Ch. 3)

m We discussed (briefly) how to generate pseudo-random
uniformly distributed numbers (U,) using the linear
congruential generator

Ur=(a-Up,_1+c) modm.

m Having at hand such U(0, 1)-distributed numbers U, we
also looked at how to generate pseudo-random numbers X
from an arbitrary distribution F by means of the inversion
method, i.e., by letting

X =F<(U)=inf{x e R: F(x) > U}.
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Last time

Last time: the inversion method

m Then the following holds true:

The output X of the algorithm above has distribution function F.

m If Fis continuous and strictly increasing, then F© = F—1.
m The method is limited to cases where

m we want to generate univariate random numbers and
m the generalized inverse F* is easy to evaluate (which is far
from always the case).
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Rejection sampling
[ Jelelelele)

Rejection sampling

m The inversion method looks promising, but what do we do
if, e.g., f(x) o exp(cos?(x)), x € (—/2,7/2)? Here we
cannot find an inverse and do not even know the
normalizing constant. ®

m This is a very common situation in statistics.
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Rejection sampling
[ Jelelelele)

Rejection sampling

m The inversion method looks promising, but what do we do
if, e.g., f(x) o exp(cos?(x)), x € (—/2,7/2)? Here we
cannot find an inverse and do not even know the
normalizing constant. ®

m This is a very common situation in statistics.

m The following (somewhat magic!) algorithm saves the day.
Let g be a density or probability function on the same state
space X (C RY) as f and assume that there exists a
constant K < oo such that

f(x) < Kg(x) V¥xeX
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Rejection sampling
[e] lelelele)

Rejection sampling (cont.)

m We proceed as follows:

set accepted ¢ false;
while accepted = false do
draw X* ~ g;

draw U ~ U(0,1);

if U < 75 then

X — X*;
accepted < true;
end

end

return X
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Rejection sampling
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Rejection sampling (cont.)

m The following holds true:

The output X of the rejection sampling algorithm has density
function f.
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Rejection sampling
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Rejection sampling (cont.)

m The following holds true:

The output X of the rejection sampling algorithm has density
function f.

m Moreover:

The expected number of trials needed before acceptance is K.

Consequently, the upper bound K should be chosen as
small as possible.
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Rejection sampling
[e]e]e] lele)

Example

m We wish to simulate from 7(x) = exp(cos?(x))/c,
x € (-n/2,7/2), where ¢ = ffﬁz exp(cos?(z)) dz is the
unknown normalizing constant.

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (12)



Rejection sampling
[e]e]e] lele)

Example

m We wish to simulate from 7(x) = exp(cos?(x))/c,
x € (-n/2,7/2), where ¢ = ffﬁz exp(cos?(z)) dz is the
unknown normalizing constant.

m However, since for all x € (—7/2,7/2),

exp(cos?(x e er 1
f(X):p(C())SC:CX '
~—

K g

where g is the density of U(—7/2,7/2), we may use
rejection sampling where a candidate X* ~ U(—n/2,7/2)
is accepted if

f(X*) _ exp(cos?(X*))/c

U< Ko(X) ~ o/c = exp(cos?(X*) — 1).
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Rejection sampling
[e]e]ele] o)

Example
m In MATLAB:
prob = @(x) exp((cos(x))”"2 - 1);
trial = 1;
accepted = false;
while ~accepted,
Xcand = - pi/2 + pixrand;

if rand < prob (Xcand),
accepted = true;
X = Xcand;
else
trial = trial + 1;
end
end
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Rejection sampling
00000e

Example

Histogram of accept-reject draws

o5 _ (%) = exp(cos’(x))/c

Figure: Plot of a histogram of 20,000 accept-reject draws together
with the true density. The average number of trials was 1.5555. In this
case the expected number is me/c = 1.5503.
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Importance sampling (IS)
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Importance sampling (IS)
00000000

Advantages of the MC method

m The MC method

m is more efficient than deterministic methods in high
dimensions,
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Importance sampling (IS)
00000000

Advantages of the MC method

m The MC method
m is more efficient than deterministic methods in high
dimensions,
m does generally not require knowledge of the normalizing
constant of a density f for computing expectations, and

= s
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Importance sampling (IS)
00000000

Advantages of the MC method

m The MC method

m is more efficient than deterministic methods in high
dimensions,

m does generally not require knowledge of the normalizing
constant of a density f for computing expectations, and

m handles efficiently “strange” integrands ¢ that may cause
problems for deterministic methods.

rrrrr = setostonts +
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Importance sampling (IS)
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Problems with MC integration

m OK, MC integration looks promising. We may however run
into problems if
m it is hard to sample from f or

9x)

)
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Importance sampling (IS)
[o] Ielelele]ele)

Problems with MC integration

m OK, MC integration looks promising. We may however run
into problems if
m it is hard to sample from f or
m if the integrand ¢ and the density f are dissimilar; in this
case we will end of with a lot of draws where the integrand
is small, and consequently only a few draws will contribute
to the estimate. This gives a large variance.

9x)

)
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Importance sampling (IS)
[o] Ielelele]ele)

Problems with MC integration

m OK, MC integration looks promising. We may however run
into problems if
m it is hard to sample from f or
m if the integrand ¢ and the density f are dissimilar; in this
case we will end of with a lot of draws where the integrand
is small, and consequently only a few draws will contribute
to the estimate. This gives a large variance.

9x)

)

m Here importance sampling is useful!
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Importance sampling (IS)
[e]e] lelele]ele)

Importance sampling (IS, Ch. 4.1)

m The basis of importance sampling is to take an
instrumental density g on X such that g(x) =0 = f(x) =0
and rewrite the expectation as

r=E0(X) = [ o(0rtx) = [ RCLOLY

f(x) _ ( f(X) >
= — dx=E X)——~
/g(x)>0 ¢(X) g(X) g(X) X g ¢( )Q(X)
= Eg (¢(X)w(X)),
where we have defined the importance weight function

w:{xex:g(x)>0}9x»—>@.

9(x)
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Importance sampling (IS)
[e]e]e] lelelele)

Importance sampling (cont.)

m Now estimate 7 = E4(¢o(X)w(X)) using standard MC:
fori=1— Ndo
| draw X' ~ g;
end
set 7y < 2oieq A(X)w(X7)/N;
return 7y
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Importance sampling (IS)
[e]e]e] lelelele)

Importance sampling (cont.)

m Now estimate 7 = E4(¢o(X)w(X)) using standard MC:
fori=1— Ndo

| draw X' ~ g;
end
set iy — SN o(XNw(X')/N;
return 7y
m Here, trivially,
1
V() = 5 Va(@(X)w (X)),

and we should thus aim at choosing g so that the function
X — ¢(x)w(x) is close to constant in the support of g. This
gives a minimal variance.

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (19)



Importance sampling (IS)
[e]e]e]e] lelele)

Example: a tricky normal expectation

m Let X be N(2, 1)-distributed and consider

r=E <1XZ0J)7exp(—X3))

:/le>o x exp(—x3)N(x;2,1) dx,
— —_————
=¢(x) =f(x)

o)

f(x)
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Importance sampling (IS)
[e]e]e]e]e] lele)

Example: a tricky normal expectation (cont.)

m Thus, standard MC will lead to a waste of computational
power. Better is to use IS with g being a
scale-location-transformed student’s t-distribution with,
say, v = 3 degrees of freedom:
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Importance sampling (IS)
00000080

Example: A tricky normal expectation (cont.)

m The standard deviation is estimated via the full width at half
maximum (FWHM) for a Gaussian bell:

FWHM = standard deviation x 2,/2log 2.
m In MATLAB:

phi = @(x) (x >= 0).xsqrt(x).*exp(- x."3);

mu = 0.75;

sigma = 1.2/ (2+sqgrt (2«1log(2)));
v = 3;

s = sigmaxsqgrt ((v - 2)/v);

X = sxtrnd(v,1,N) + mu;
omega = @ (x) normpdf(x,2,1)./(tpdf((x — mu)/s,v)/s);
tau = mean (phi (X) .*omega (X)) ;
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Importance sampling (IS)
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Example: A tricky normal expectation (cont.)

m Executing the IS algorithm and standard MC in parallel
yields the following:

Importance sampling

0071 Standard MC

0 500 1000 1500
Sample size N
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Self-normalized IS
000000

Self-normalized IS (Ch. 4.1.1)

m Often f(x) is known only up to a normalizing constant
c > 0,i.e. f(x) = z(x)/c, where we can evaluate
z(x) = cf(x) but not f(x).
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Self-normalized IS
000000

Self-normalized IS (Ch. 4.1.1)

m Often f(x) is known only up to a normalizing constant
c > 0,i.e. f(x) = z(x)/c, where we can evaluate
z(x) = cf(x) but not f(x). Then, as before, letting now
w(

x) = cf(x)/g(x) = 2(x)/9(x),

€ im0 20OF(X) ax
T e /¢ N C(fi(x)>0 f(x) dx
_ Joo0 o9 Z’&X g A [y 0 B(X)w(X)g(x) dx
fg(x)>o 163 (X) ax fg(x)>o w(x)g(x) dx
_ Eg(e(X)w(X))
Eg(w(X))
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Self-normalized IS
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Self-normalized IS (cont.)

m Since w(x) = z(x)/g(x) can be evaluated for each x, we
may now estimate the ratio

_ Eg(o(X)w(X))
Eg(w(X))

T

by solving one MC problem for the numerator and another
for the denominator.
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Self-normalized IS
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Self-normalized IS (cont.)

m Since w(x) = z(x)/g(x) can be evaluated for each x, we
may now estimate the ratio

_ Eg(o(X)w(X))
Eg(w(X))

T

by solving one MC problem for the numerator and another
for the denominator.

m Note that since ¢ = E4(w(X)), this approach provides, as a
by-product, an estimate also of the normalizing constant c.
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Self-normalized IS
[e]e] lelele]e]

Example

m We reconsider the density
f(x) = exp(cos®(x))/c, x € (—/2,7/2),

treated previously and estimate its variance as well as the
normalizing constant ¢ > 0 using self-normalized IS.

m Let the instrumental distribution g be the uniform
distribution U(—7/2,7/2).
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Self-normalized IS
[e]e]e] lele]e]

Example (cont.)

m In MATLAB:

z = @(x) exp(cos(x)."2);

X - pi/2 + pixrand(1,N);

omega = @(x) pixz(x);

tau = cumsum(X."2.xomega (X)) ./cumsum(omega (X)) ;
c = cumsum(omega (X)) ./ (1:N);

subplot (2,1,1);

plot (1:N,c);

subplot (2,1,2);

plot (1:N, tau);
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Self-normalized IS
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Example (cont.)

m Plotting the outcome:

Estimated normalizing constant
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Self-normalized IS
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IS = representation of f

The weighted sample (X', w(X')) can be viewed as a discrete
MC representation of the target distribution f.

() = expleos’(x)e, -T2 < x < W2 MC representation
007
0ss - 008
f(x)
04 K Y 0.05|
() :
035 g i’ \ 004
/ \
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Self-normalized IS
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E1 comprises problems on

m random number generation (transformation-based
methods, the inverse method, rejection sampling),

m MC/IS (power production of a wind turbine),
m Plug-in MC estimators and the delta method.
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