

Computer Intensive Methods in Mathematical Statistics

Johan Westerborn

Department of mathematics
KTH Royal Institute of Technology
johawes@kth.se

Lecture 3
Importance sampling
24 March 2017

Plan of today's lecture

- 1 Last time
- 2 Rejection sampling
- 3 Importance sampling (IS)
- 4 Self-normalized IS

Outline

1 Last time

2 Rejection sampling

3 Importance sampling (IS)

4 Self-normalized IS

Last time: the delta method

- For a given estimand τ one is often interested in estimating $\varphi(\tau)$ for some function $\varphi : \mathbb{R} \rightarrow \mathbb{R}$.
- For this purpose, we simply used the **plug-in estimator** $\varphi(\tau_N)$ of $\varphi(\tau)$.
- The estimator $\varphi(\tau_N)$ is generally **biased** for finite N ; indeed, under suitable assumptions on φ it holds that

$$\mathbb{E}(\varphi(\tau_N) - \varphi(\tau)) = \frac{\varphi''(\tau)\sigma^2(\phi)}{2N} + O(N^{-3/2}).$$

- In addition, one may establish the CLT

$$\sqrt{N}(\varphi(\tau_N) - \varphi(\tau)) \xrightarrow{d.} \mathbf{N}(0, \varphi'(\tau)^2\sigma^2(\phi)), \quad \text{as } N \rightarrow \infty.$$

Last time: MC output analysis (Ch. 4)

- We used the CLT

$$\sqrt{N}(\tau_N - \tau) \xrightarrow{d.} N(0, \sigma^2(\phi))$$

to target τ by the approximate **confidence interval**

$$I_\alpha = \left(\tau_N \pm \lambda_{\alpha/2} \frac{\sigma(\phi)}{\sqrt{N}} \right).$$

- Moreover, the delta method provides the approximate confidence interval

$$I_\alpha = \left(\varphi(\tau_N) \pm \lambda_{\alpha/2} |\varphi'(\tau_N)| \frac{\sigma(\phi)}{\sqrt{N}} \right)$$

for $\varphi(\tau)$.

Last time: pseudo-random number generation (Ch. 3)

- We discussed (briefly) how to generate pseudo-random uniformly distributed numbers (U_n) using the **linear congruential generator**

$$U_n = (a \cdot U_{n-1} + c) \mod m.$$

- Having at hand such $U(0, 1)$ -distributed numbers U , we also looked at how to generate pseudo-random numbers X from an arbitrary distribution F by means of the **inversion method**, i.e., by letting

$$X = F^{\leftarrow}(U) = \inf\{x \in \mathbb{R} : F(x) \geq U\}.$$

Last time: the inversion method

- Then the following holds true:

Theorem (the inverse method)

The output X of the algorithm above has distribution function F .

- If F is continuous and strictly increasing, then $F^{-\leftarrow} = F^{-1}$.
- The method is limited to cases where
 - we want to generate **univariate** random numbers and
 - the generalized inverse $F^{-\leftarrow}$ is **easy to evaluate** (which is far from always the case).

Outline

1 Last time

2 Rejection sampling

3 Importance sampling (IS)

4 Self-normalized IS

Rejection sampling

- The inversion method looks promising, but what do we do if, e.g., $f(x) \propto \exp(\cos^2(x))$, $x \in (-\pi/2, \pi/2)$? Here we cannot find an inverse and do not even know the normalizing constant. 😞
- This is a very common situation in statistics.
- The following (somewhat magic!) algorithm saves the day. Let g be a density or probability function on the same state space X ($\subseteq \mathbb{R}^d$) as f and assume that there exists a constant $K < \infty$ such that

$$f(x) \leq Kg(x) \quad \forall x \in X.$$

Rejection sampling

- The inversion method looks promising, but what do we do if, e.g., $f(x) \propto \exp(\cos^2(x))$, $x \in (-\pi/2, \pi/2)$? Here we cannot find an inverse and do not even know the normalizing constant. 😞
- This is a very common situation in statistics.
- The following (somewhat magic!) algorithm saves the day. Let g be a density or probability function on the same state space X ($\subseteq \mathbb{R}^d$) as f and assume that there exists a constant $K < \infty$ such that

$$f(x) \leq K g(x) \quad \forall x \in X.$$

Rejection sampling (cont.)

- We proceed as follows:

```
set accepted ← false;  
while accepted = false do  
    draw  $X^* \sim g$ ;  
    draw  $U \sim U(0, 1)$ ;  
    if  $U \leq \frac{f(X^*)}{Kg(X^*)}$  then  
         $X \leftarrow X^*$ ;  
        accepted ← true;  
    end  
end  
return  $X$ 
```

Rejection sampling (cont.)

- The following holds true:

Theorem (rejection sampling)

The output X of the rejection sampling algorithm has density function f .

- Moreover:

Theorem

The expected number of trials needed before acceptance is K .

Consequently, the upper bound K should be chosen as small as possible.

Rejection sampling (cont.)

- The following holds true:

Theorem (rejection sampling)

The output X of the rejection sampling algorithm has density function f .

- Moreover:

Theorem

The expected number of trials needed before acceptance is K .

Consequently, the upper bound K should be chosen **as small as possible**.

Example

- We wish to simulate from $f(x) = \exp(\cos^2(x))/c$, $x \in (-\pi/2, \pi/2)$, where $c = \int_{-\pi/2}^{\pi/2} \exp(\cos^2(z)) dz$ is the unknown normalizing constant.
- However, since for all $x \in (-\pi/2, \pi/2)$,

$$f(x) = \frac{\exp(\cos^2(x))}{c} \leq \frac{e}{c} = \underbrace{\frac{e\pi}{c}}_K \times \underbrace{\frac{1}{\pi}}_g,$$

where g is the density of $U(-\pi/2, \pi/2)$, we may use rejection sampling where a candidate $X^* \sim U(-\pi/2, \pi/2)$ is accepted if

$$U \leq \frac{f(X^*)}{Kg(X^*)} = \frac{\exp(\cos^2(X^*))/c}{e/c} = \exp(\cos^2(X^*) - 1).$$

Example

- We wish to simulate from $f(x) = \exp(\cos^2(x))/c$, $x \in (-\pi/2, \pi/2)$, where $c = \int_{-\pi/2}^{\pi/2} \exp(\cos^2(z)) dz$ is the unknown normalizing constant.
- However, since for all $x \in (-\pi/2, \pi/2)$,

$$f(x) = \frac{\exp(\cos^2(x))}{c} \leq \frac{e}{c} = \underbrace{\frac{e\pi}{c}}_K \times \underbrace{\frac{1}{\pi}}_g,$$

where g is the density of $U(-\pi/2, \pi/2)$, we may use rejection sampling where a candidate $X^* \sim U(-\pi/2, \pi/2)$ is accepted if

$$U \leq \frac{f(X^*)}{Kg(X^*)} = \frac{\exp(\cos^2(X^*))/c}{e/g} = \exp(\cos^2(X^*) - 1).$$

Example

■ In MATLAB:

```
prob = @(x) exp((cos(x))^2 - 1);
trial = 1;
accepted = false;
while ~accepted,
    Xcand = - pi/2 + pi*rand;
    if rand < prob(Xcand),
        accepted = true;
        X = Xcand;
    else
        trial = trial + 1;
    end
end
```

Example

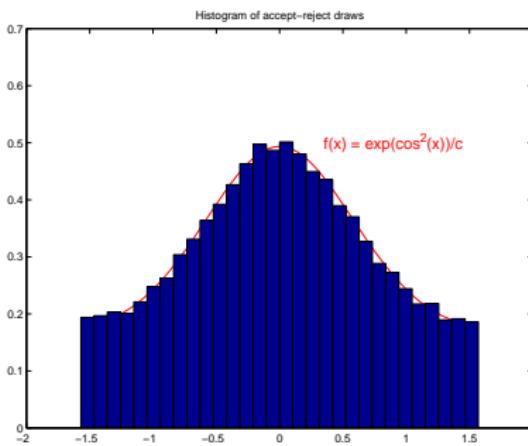


Figure: Plot of a histogram of 20,000 accept-reject draws together with the true density. The average number of trials was 1.5555. In this case the expected number is $\pi e/c = 1.5503$.

Outline

1 Last time

2 Rejection sampling

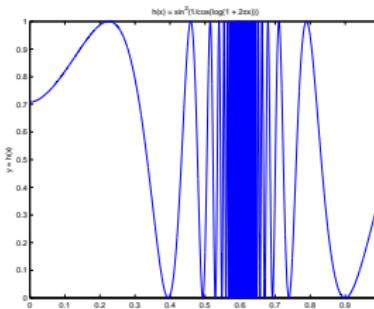
3 Importance sampling (IS)

4 Self-normalized IS

Advantages of the MC method

■ The MC method

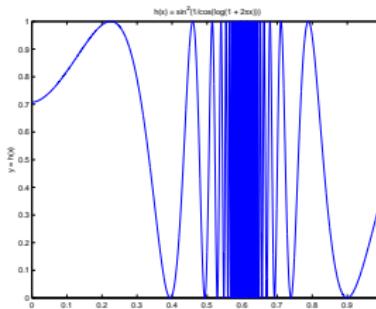
- is more efficient than deterministic methods in high dimensions,
- does generally not require knowledge of the normalizing constant of a density f for computing expectations, and
- handles efficiently “strange” integrands ϕ that may cause problems for deterministic methods.



Advantages of the MC method

■ The MC method

- is more efficient than deterministic methods in high dimensions,
- does generally not require knowledge of the normalizing constant of a density f for computing expectations, and
- handles efficiently “strange” integrands ϕ that may cause problems for deterministic methods.



Advantages of the MC method

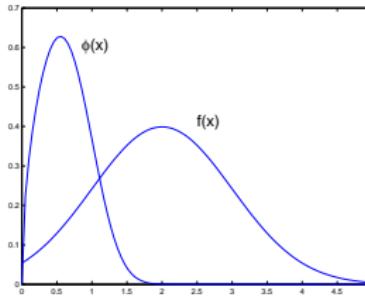
■ The MC method

- is more efficient than deterministic methods in high dimensions,
- does generally not require knowledge of the normalizing constant of a density f for computing expectations, and
- handles efficiently “strange” integrands ϕ that may cause problems for deterministic methods.



Problems with MC integration

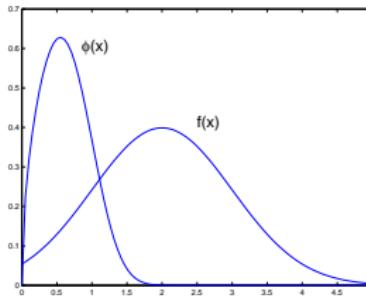
- OK, MC integration looks promising. We may however run into problems if
 - it is hard to sample from f or
 - if the integrand ϕ and the density f are dissimilar; in this case we will end of with a lot of draws where the integrand is small, and consequently only a few draws will contribute to the estimate. This gives a large variance.



- Here importance sampling is useful!

Problems with MC integration

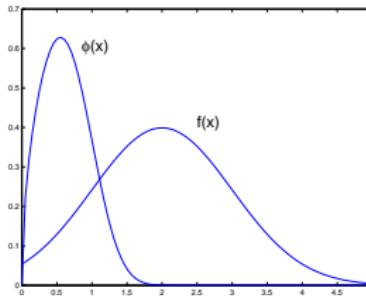
- OK, MC integration looks promising. We may however run into problems if
 - it is hard to sample from f or
 - if the integrand ϕ and the density f are dissimilar; in this case we will end of with a lot of draws where the integrand is small, and consequently only a few draws will contribute to the estimate. This gives a large variance.



- Here importance sampling is useful!

Problems with MC integration

- OK, MC integration looks promising. We may however run into problems if
 - it is hard to sample from f or
 - if the integrand ϕ and the density f are dissimilar; in this case we will end of with a lot of draws where the integrand is small, and consequently only a few draws will contribute to the estimate. This gives a large variance.



- Here **importance sampling** is useful!

Importance sampling (IS, Ch. 4.1)

- The basis of importance sampling is to take an **instrumental density** g on X such that $g(x) = 0 \Rightarrow f(x) = 0$ and rewrite the expectation as

$$\begin{aligned}
 \tau &= \mathbb{E}_f(\phi(X)) = \int_X \phi(x)f(x) dx = \int_{f(x)>0} \phi(x)f(x) dx \\
 &= \int_{g(x)>0} \phi(x) \frac{f(x)}{g(x)} g(x) dx = \mathbb{E}_g \left(\phi(X) \frac{f(X)}{g(X)} \right) \\
 &= \mathbb{E}_g(\phi(X)\omega(X)),
 \end{aligned}$$

where we have defined the **importance weight function**

$$\omega : \{x \in X : g(x) > 0\} \ni x \mapsto \frac{f(x)}{g(x)}.$$

Importance sampling (cont.)

- Now estimate $\tau = \mathbb{E}_g(\phi(X)\omega(X))$ using standard MC:

```

for  $i = 1 \rightarrow N$  do
    | draw  $X^i \sim g$ ;
end

```

```

set  $\tau_N \leftarrow \sum_{i=1}^N \phi(X^i)\omega(X^i)/N$ ;
return  $\tau_N$ 

```

- Here, trivially,

$$\mathbb{V}(\tau_N) = \frac{1}{N} \mathbb{V}_g(\phi(X)\omega(X)),$$

and we should thus aim at choosing g so that the function $x \mapsto \phi(x)\omega(x)$ is close to constant in the support of g . This gives a minimal variance.

Importance sampling (cont.)

- Now estimate $\tau = \mathbb{E}_g(\phi(X)\omega(X))$ using standard MC:

```

for  $i = 1 \rightarrow N$  do
    | draw  $X^i \sim g$ ;
end

```

```

set  $\tau_N \leftarrow \sum_{i=1}^N \phi(X^i)\omega(X^i)/N$ ;
return  $\tau_N$ 

```

- Here, trivially,

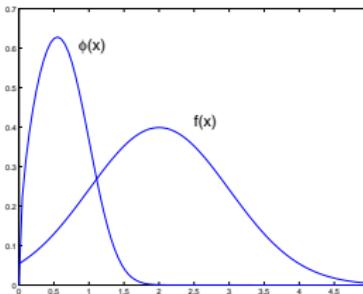
$$\mathbb{V}(\tau_N) = \frac{1}{N} \mathbb{V}_g(\phi(X)\omega(X)),$$

and we should thus aim at choosing g so that the function $x \mapsto \phi(x)\omega(x)$ is close to constant in the support of g . This gives a minimal variance.

Example: a tricky normal expectation

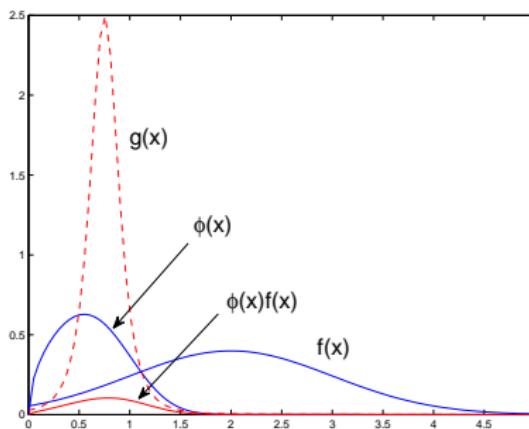
- Let X be $N(2, 1)$ -distributed and consider

$$\begin{aligned}\tau &= \mathbb{E} \left(\mathbb{1}_{x \geq 0} \sqrt{x} \exp(-x^3) \right) \\ &= \int \underbrace{\mathbb{1}_{x \geq 0} \sqrt{x} \exp(-x^3)}_{=\phi(x)} \underbrace{N(x; 2, 1)}_{=f(x)} dx,\end{aligned}$$



Example: a tricky normal expectation (cont.)

- Thus, standard MC will lead to a waste of computational power. Better is to use IS with g being a scale-location-transformed student's t -distribution with, say, $\nu = 3$ degrees of freedom:



Example: A tricky normal expectation (cont.)

- The standard deviation is estimated via the **full width at half maximum** (FWHM) for a Gaussian bell:

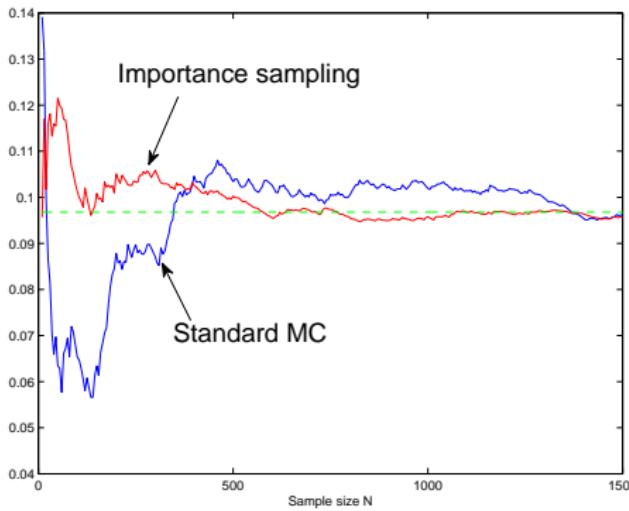
$$\text{FWHM} = \text{standard deviation} \times 2\sqrt{2 \log 2}.$$

- In MATLAB:

```
phi = @(x) (x >= 0).*sqrt(x).*exp(-x.^3);  
mu = 0.75;  
sigma = 1.2/(2*sqrt(2*log(2)));  
v = 3;  
s = sigma*sqrt((v - 2)/v);  
X = s*trnd(v,1,N) + mu;  
omega = @(x) normpdf(x,2,1)./(tpdf((x - mu)/s,v)/s);  
tau = mean(phi(X).*omega(X));
```

Example: A tricky normal expectation (cont.)

- Executing the IS algorithm and standard MC in parallel yields the following:



Outline

1 Last time

2 Rejection sampling

3 Importance sampling (IS)

4 Self-normalized IS

Self-normalized IS (Ch. 4.1.1)

- Often $f(x)$ is known only up to a normalizing constant $c > 0$, i.e. $f(x) = z(x)/c$, where we can evaluate $z(x) = cf(x)$ but not $f(x)$. Then, as before, letting now $\omega(x) = cf(x)/g(x) = z(x)/g(x)$,

$$\begin{aligned}
 \tau &= \mathbb{E}_f(\phi(X)) = \int_X \phi(x)f(x) dx = \frac{c \int_{f(x)>0} \phi(x)f(x) dx}{c \int_{f(x)>0} f(x) dx} \\
 &= \frac{\int_{g(x)>0} \phi(x) \frac{cf(x)}{g(x)} g(x) dx}{\int_{g(x)>0} \frac{cf(x)}{g(x)} g(x) dx} = \frac{\int_{g(x)>0} \phi(x)\omega(x)g(x) dx}{\int_{g(x)>0} \omega(x)g(x) dx} \\
 &= \frac{\mathbb{E}_g(\phi(X)\omega(X))}{\mathbb{E}_g(\omega(X))}.
 \end{aligned}$$

Self-normalized IS (Ch. 4.1.1)

- Often $f(x)$ is known only up to a normalizing constant $c > 0$, i.e. $f(x) = z(x)/c$, where we can evaluate $z(x) = cf(x)$ but not $f(x)$. Then, as before, letting now $\omega(x) = cf(x)/g(x) = z(x)/g(x)$,

$$\begin{aligned}
 \tau &= \mathbb{E}_f(\phi(X)) = \int_X \phi(x)f(x) dx = \frac{c \int_{f(x)>0} \phi(x)f(x) dx}{c \int_{f(x)>0} f(x) dx} \\
 &= \frac{\int_{g(x)>0} \phi(x) \frac{cf(x)}{g(x)} g(x) dx}{\int_{g(x)>0} \frac{cf(x)}{g(x)} g(x) dx} = \frac{\int_{g(x)>0} \phi(x)\omega(x)g(x) dx}{\int_{g(x)>0} \omega(x)g(x) dx} \\
 &= \frac{\mathbb{E}_g(\phi(X)\omega(X))}{\mathbb{E}_g(\omega(X))}.
 \end{aligned}$$

Self-normalized IS (cont.)

- Since $\omega(x) = z(x)/g(x)$ can be evaluated for each x , we may now estimate the ratio

$$\tau = \frac{\mathbb{E}_g(\phi(X)\omega(X))}{\mathbb{E}_g(\omega(X))}$$

by solving one MC problem for the numerator and another for the denominator.

- Note that since $c = \mathbb{E}_g(\omega(X))$, this approach provides, as a by-product, an estimate also of the normalizing constant c .

Self-normalized IS (cont.)

- Since $\omega(x) = z(x)/g(x)$ can be evaluated for each x , we may now estimate the ratio

$$\tau = \frac{\mathbb{E}_g(\phi(X)\omega(X))}{\mathbb{E}_g(\omega(X))}$$

by solving one MC problem for the numerator and another for the denominator.

- Note that since $c = \mathbb{E}_g(\omega(X))$, this approach provides, as a by-product, an estimate also of the normalizing constant c .

Example

- We reconsider the density

$$f(x) = \exp(\cos^2(x))/c, \quad x \in (-\pi/2, \pi/2),$$

treated previously and estimate its variance as well as the normalizing constant $c > 0$ using self-normalized IS.

- Let the instrumental distribution g be the uniform distribution $U(-\pi/2, \pi/2)$.

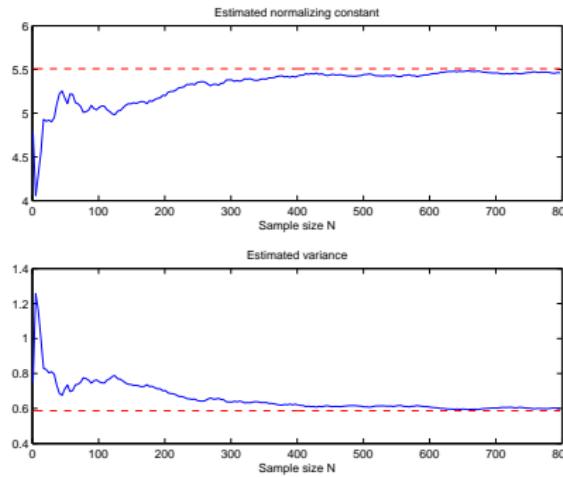
Example (cont.)

■ In MATLAB:

```
z = @(x) exp(cos(x).^2);  
X = -pi/2 + pi*rand(1,N);  
omega = @(x) pi*z(x);  
tau = cumsum(X.^2.*omega(X)) ./ cumsum(omega(X));  
c = cumsum(omega(X)) ./ (1:N);  
subplot(2,1,1);  
plot(1:N,c);  
subplot(2,1,2);  
plot(1:N,tau);
```

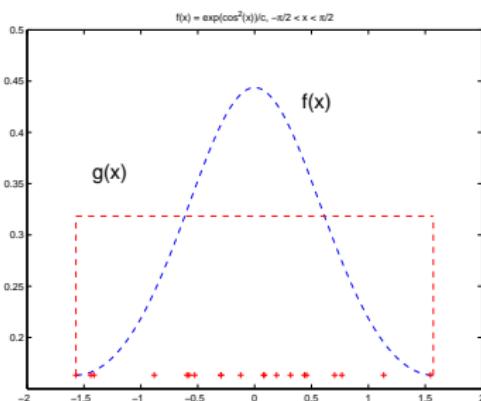
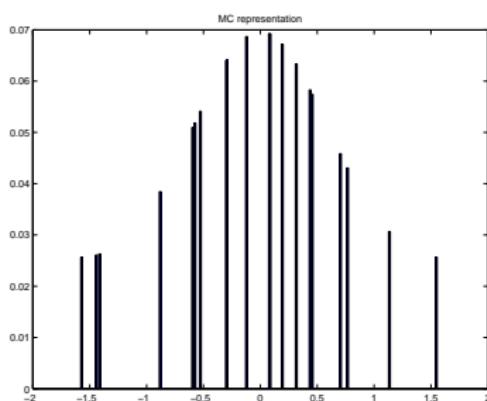
Example (cont.)

■ Plotting the outcome:



IS \Rightarrow representation of f

The weighted sample $(X^i, \omega(X^i))$ can be viewed as a discrete MC representation of the target distribution f .

 $f(x)$ $\xrightarrow{\text{IS}}$ $(X^i, \omega(X^i))$ 

E1

E1 comprises problems on

- random number generation (transformation-based methods, the inverse method, rejection sampling),
- MC/IS (power production of a wind turbine),
- Plug-in MC estimators and the delta method.