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What do we need to know?

What do we need to master for having practical use of the MC
method?

We agreed on that, for instance, the following questions should
be answered:
How do we generate the needed input random variables?

How many computer experiments should we do? What can
be said about the error?

Can we exploit problem structure to speed up the
computation?
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Introduction to variance reduction
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Confidence interval from a simulation viewpoint

m Assume, as usual, that we estimate 7 = E(¢(X)) by means
of MC, providing the level 1 — o confidence interval

= (w372

for 7.
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Confidence interval from a simulation viewpoint

m Assume, as usual, that we estimate 7 = E(¢(X)) by means
of MC, providing the level 1 — o confidence interval

= (w372

for 7.

m Assume that we want to choose N large enough to assure
that we estimate = with an error less than a given ¢ > 0 on
the specified level. This means that

a(9)
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00000000

Confidence interval from a simulation viewpoint

m Assume, as usual, that we estimate 7 = E(¢(X)) by means
of MC, providing the level 1 — o confidence interval

= (w372

for 7.

m Assume that we want to choose N large enough to assure
that we estimate = with an error less than a given ¢ > 0 on
the specified level. This means that

a(9)

)\a/QW<5 = N>)\i/2
m Thus, the required MC sample size N (i.e., the required
work) increases linearly with o2(¢).
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Alternative representations of 7

m Thus, in general, a strategy to gain computational
efficiency would thus be to find an alternative
representation (¢, ') of 7, in the sense that

r=EA(0(X)) = [ o)1) o
_ /X ¢ ()f (x) dx = En(¢/(X)),

for which o2 (¢') < o2(9).
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Alternative representations of 7

m Thus, in general, a strategy to gain computational
efficiency would thus be to find an alternative
representation (¢, ') of 7, in the sense that

r=EA(0(X)) = [ o)1) o
_ /X ¢ (X)F (x) dx = B (¢/ (X)),
for which o2 (¢') < o2(9).

m Last time we saw that importance sampling (IS) was one
way of achieving this: ' < g and ¢ < ¢w.
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Introduction to variance reduction
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Last time: Importance sampling

m The basis of importance sampling was to take an
instrumental density g on X such that g(x) =0 = f(x) =0
and rewrite the integral as

T=Ef (o / o(x)f(x)dx = /f(x)>0 o(x)f(x) dx
_ ) _ UG
- /g o P a0 B =B (000130 )
= Eg (¢(X)w(X)),
where f
w:{xeX:g(x)>O}9xH>g(();))

is the so-called importance weight function.
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Introduction to variance reduction
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Last time: Importance sampling (cont.)

m Now estimate 7 = Eq(¢(X)w(X)) using standard MC:
fori=1— Ndo
| draw X' ~ g;
end
set 78 « SN, o(X)w(X)/N;
return 7
m The CLT provides immediately, as N — oo,

VN(r§ — ) = N(0, 05(gw)),

where ag(gzbw) = Vg(o(X)w(X)) is estimated using var.
m Conclusion: Try to choose g so that the function
X — ¢(X)w(x) is close to constant in the support of g.
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Last time: Self-normalized IS

m Often f(x) is known only up to a normalizing constant
¢ > 0,i.e. f(x) = z(x)/c, where we can evaluate
z(x) = cf(x) but not f(x). We could then however show
that 7 can be rewritten as

i L Eg(0(X)w(X)
T=EOX) == TR o)

where (x)
Z(X

w.{XGX-Q(X)>O}9XH@

is known and can be evaluated.
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Introduction to variance reduction
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Last time: Self-normalized IS (cont.)

m Thus, having generated X', ..., XN from g we may
estimate Eq(¢(X)w(X)) and Eg(w(X)) using standard MC:

_ E0(X)s(X)
Eg(w(X))
RS OXNe(X) Qh X)L s
W i w(X) _,; S oxy PO =T
_

normalized weight

m As a by product we obtain the estimate
1N
c=Egw(X)~ =) w(X.

N
(=1
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A CLT for self-normalized IS estimators

m One may establish the following CLT (see E2).

Assume that ag(wgb) = Vg(w(X)o(X)) < co. Then

VN(R'® = 1) = N(0, 05 (w{¢ — 73)/c?),

where, as usual, ¢ = Eg(w(X)).
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A CLT for self-normalized IS estimators (cont.)

m Here the asymptotic standard deviation

og(w{e—7})/c

is in general intractable.
m This quantity can however be estimated by
letting, for each of the draws X' ~ g,

Zi = w(X)((X') —8"S),

applying std to the vector containing all the Z;s, and, finally,
dividing the result by the MC estimate of the normalizing
constant c.

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (11)



Control variates

Outline

Control variates

han Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (12)



Control variates
00000

Control variates

m Assume that we have at hand another real-valued random
variable Y, referred to as a control variate such that

(i) E(Y)= mis known and
(i) Y can be simulated at the same complexity as ¢(X).
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Control variates

m Assume that we have at hand another real-valued random
variable Y, referred to as a control variate such that

(i) E(Y)= mis known and
(i) Y can be simulated at the same complexity as ¢(X).

m Then we may set, for some a € R,

Z=¢(X)+a(Y —m),

so that
E(Z) = E(¢(X) +a(Y —m)) = E(¢(X)) +a (E(Y) —m) = 7.
=T =0
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Control variates (cont.)

m In addition, if ¢(X) and Y have covariance C(¢(X), Y) it
holds that

V(Z) = V(¢(X) + aY) = C(¢(X) + aY, d(X) + aY)
= V(¢(X)) + 2aC(H(X), Y) + a?V(Y).
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Control variates (cont.)

m In addition, if ¢(X) and Y have covariance C(¢(X), Y) it
holds that

V(Z) = V(¢(X) + aY) = C(¢(X) + aY, d(X) + aY)
= V(¢(X)) + 2aC(H(X), Y) + a?V(Y).

m Differentiating w.r.t. « and minimizing yields

_ o C(e(X),Y)
0=2C(¢(X),Y)+2aV(Y) & a=« ——Wa

which provides the optimal coefficient a* in terms of
variance.
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Control variates (cont.)

m Plugging o into the formula for V(Z) gives
V(Z) = V(o(X)) 4+ 2a*C((X), Y) + (*)2V(Y) = ...
_ _C(e(X), Y2\ _ B 2
= 0600) (1= a0y ) = TEON-p6x). V2)

where

Ju_ CO).Y)
VIGOOVV(Y)

is the correlation between ¢(X) and Y.

p(o(X), Y
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00e000

Control variates (cont.)

m Plugging o into the formula for V(Z) gives

V(Z) = V(o(X)) 4+ 2a*C((X), Y) + (*)2V(Y) = ...
2
— V(6(X) (1 - W) = V(X)) - p(#(X). V)2,

where
e  C(o(X).Y)

V) VI(Y)
is the correlation between ¢(X) and Y.

m Consequently, we can expect large variance reduction if
lp((X), Y)| is close to 1.

p(6(X), Y)
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Control variates
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Example: another tricky integral

m As an example, estimate

B w/2 o B m/2 ™ 2
T _/0 exp(cos (x))dx—/0 5 exp(cos”(x))

using
Z = ¢(X) +a*(Y —m),

where Y = cos?(X) is a control variate with

/2 2 1
m=E(Y) = / cosz(x); dx = {integration by parts} = 5
0
and &* is an estimate of the optimal coefficient.
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Control variates
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Example: another tricky integral (cont.)

m In MATLAB:
cos2 = @(x) cos(x)."2;
phi

Q@ (x) (pi/2)*exp(cos2(x));
i/2)+rand(1,N);

mean (phi (X)) ;

Y = cos2(X);

m=1/2;

alpha = - cov([phi(X)"' Y'])./var(Y); % appr. optimal alpha
Z = phi(X) + alpha(l,2)*(Y - m);

tau_CV = mean (Z);

X = (p
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[e]e]e]e]e] )

Example: another tricky integral (cont.)

B Standard MC

L
800 900 1000

L L L L L
300 400 500 600 700

. .
] 100 200
sample size N
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Antithetic sampling
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Antithetic sampling

Again, assume that we wish to estimate 7 = E¢(¢(X)) by
means of MC. For simplicity, introduce the short-hand notation
V = ¢(X), so that 7 = E(V).
Now, assume we can generate another variable V' such that
(i) E(V) =,
(i) (V') =V(V) (= o2(¢)),

(iii) V' can be simulated at the same complexity as V.
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Antithetic sampling
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Antithetic sampling (cont.)

m Then, letting

st V+V/
=5
it holds that E(W) = 7.
m Moreover,
V+V 1
V(W) zv< +2 > = £ (V(V) +20(V, V) + 7(V))

(V(V)+C(V,V)).

N =
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Antithetic sampling
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Antithetic sampling (cont.)

m Now, note that each W is twice as costly to generate as
each V.

m Thus, for a fixed computation budget we can choose
between generating 2N Vs or N Ws.
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Antithetic sampling
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Antithetic sampling (cont.)

m Now, note that each W is twice as costly to generate as
each V.
m Thus, for a fixed computation budget we can choose
between generating 2N Vs or N Ws.
m In terms confidence bounds it is better to use the Ws if
D(W) D(V)
)‘a/2 \/N < )‘a/2 m

= 2V(W) < V(V)

= V(V)+C(V, V') < V(V)
= C(V, V) <0.
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Antithetic sampling
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Antithetic sampling (cont.)

m Now, note that each W is twice as costly to generate as
each V.
m Thus, for a fixed computation budget we can choose
between generating 2N Vs or N Ws.
m In terms confidence bounds it is better to use the Ws if
D(W) D(V)
)‘a/2 \/N < )‘a/2 m

= 2V(W) < V(V)

S V(V)+C(V, V) <V(V)
s C(Vv,V)<o.
m Thus, if we can find V’ such that the antithetic variables V

and V' are negatively correlated, then we will gain
computational work.
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Antithetic sampling
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Antithetic sampling (cont.)

m For this purpose, the following theorem can be very useful.

Theorem

Let U be a random variable and let o : R — R be a monotone

function. Moreover, assume that there exists a non-increasing
transform T : R — R such that U £ T(U). Then V = (U) and
V' = p(T(U)) are identically distributed and

C(V, V') = C(p(U), o(T(U))) < 0.
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Antithetic sampling
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Example: a tricky integral (reconsidered)

m We estimate again

T = /F/Z exp(cos?(x)) dx = /Tr/z ~ exp(cos?(x)) = dx
0 0

U = cos?(X),
where {w(U) _ 3 exp(u).
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Antithetic sampling
[e]e]e]e] Telele]

Example: a tricky integral (reconsidered)

m We estimate again

T = /F/Z exp(cos?(x)) dx = /Tr/z ~ exp(cos?(x)) = dx
0 0

p(u) = 3 exp(u).
m Now letting T(u) =1 — u yields

T(U) =1 — cos?(X) = sin?(X)

= cos? (g - X) £ cos?(X) = U.
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Antithetic sampling
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Example: a tricky integral (reconsidered)

m Since in addition T(u) = 1 — u is non-increasing and
¢(u) = 5 exp(u) monotone, the theorem above applies.
Thus,

C | Z exp(cos?(X)), = exp(1 — cos?(X)) | <o,
> o FPLZ o5 W)
=sin?(X)
and we may apply antithetic sampling with
V = Z exp(cos?(X)),

V' = T exp(sin®(X)),

_ vV
W —_— T.
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Example: a tricky integral (reconsidered) (cont.)

m In Matlab:
cos2 = @(x) cos(x)."2;
phi = @(x) (pi/2)+exp(cos2(x));
X = (pi/2)*rand(1,N);
tau = mean (phi (X)) ;

XX = (pi/2)+*rand(1l,N/2); % only half the sample size

(
V_1 = (pi/2)*exp (cos2 (XX));
V_2 = (pi/2)*exp(l - cos2(XX));
W= (V_1 + V_2)/2;

tau_AS = mean (W) ;

UB = tau + norminv (0.975) «std (phi (X)) ./sqgrt (N);

LB = tau - norminv (0.975) xstd (phi (X)) ./sqgrt (N);
UB_AS = tau_AS + normlnv(0.975)*std ) /sqrt (N/2) ;
LB_AS = tau_AS - norminv (0.975) «std (W) ./sqrt (N/2);
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Example: a tricky integral (reconsidered) (cont.)

o With antithetic sampling

;
W
24l | Standard MC |
|
231 i
%
0
22 |
- , . , , . , , . ,
0 100 200 300 400 500 600 700 800 900 1000
Sample size N, (= 2 N,,)
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