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What do we need to know?

What do we need to master for having practical use of the MC
method?

We agreed on that, for instance, the following questions should
be answered:

1 How do we generate the needed input random variables?
2 How many computer experiments should we do? What can

be said about the error?
3 Can we exploit problem structure to speed up the

computation?
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Confidence interval from a simulation viewpoint

Assume, as usual, that we estimate τ = E(φ(X )) by means
of MC, providing the level 1− α confidence interval

Iα =

(
τN ± λα/2

σ(φ)√
N

)
for τ .
Assume that we want to choose N large enough to assure
that we estimate τ with an error less than a given ε > 0 on
the specified level. This means that

λα/2
σ(φ)√

N
< ε ⇔ N > λ2

α/2
σ2(φ)

ε2 .

Thus, the required MC sample size N (i.e., the required
work) increases linearly with σ2(φ).
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Alternative representations of τ

Thus, in general, a strategy to gain computational
efficiency would thus be to find an alternative
representation (φ′, f ′) of τ , in the sense that

τ = Ef (φ(X )) =

∫
X
φ(x)f (x)dx

=

∫
X
φ′(x)f ′(x)dx = Ef ′(φ

′(X )),

for which σ2
f ′(φ

′) < σ2
f (φ).

Last time we saw that importance sampling (IS) was one
way of achieving this: f ′ ← g and φ′ ← φω.
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Last time: Importance sampling

The basis of importance sampling was to take an
instrumental density g on X such that g(x) = 0⇒ f (x) = 0
and rewrite the integral as

τ = Ef (φ(X )) =

∫
X
φ(x)f (x)dx =

∫
f (x)>0

φ(x)f (x)dx

=

∫
g(x)>0

φ(x)
f (x)
g(x)

g(x)dx = Eg

(
φ(X )

f (X )

g(X )

)
= Eg (φ(X )ω(X )) ,

where
ω : {x ∈ X : g(x) > 0} 3 x 7→ f (x)

g(x)
is the so-called importance weight function.
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Last time: Importance sampling (cont.)

Now estimate τ = Eg(φ(X )ω(X )) using standard MC:
for i = 1→ N do

draw X i ∼ g;
end
set τ IS

N ←
∑N

i=1 φ(X
i)ω(X i)/N;

return τ IS
N

The CLT provides immediately, as N →∞,
√

N(τ IS
N − τ)

d.−→ N(0, σ2
g(φω)),

where σ2
g(φω) = Vg(φ(X )ω(X )) is estimated using var.

Conclusion: Try to choose g so that the function
x 7→ φ(x)ω(x) is close to constant in the support of g.
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Last time: Self-normalized IS

Often f (x) is known only up to a normalizing constant
c > 0, i.e. f (x) = z(x)/c, where we can evaluate
z(x) = cf (x) but not f (x). We could then however show
that τ can be rewritten as

τ = Ef (φ(X )) = . . . =
Eg(φ(X )ω(X ))

Eg(ω(X ))
,

where
ω : {x ∈ X : g(x) > 0} 3 x 7→ z(x)

g(x)

is known and can be evaluated.
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Last time: Self-normalized IS (cont.)

Thus, having generated X 1, . . . ,X N from g we may
estimate Eg(φ(X )ω(X )) and Eg(ω(X )) using standard MC:

τ =
Eg(φ(X )ω(X ))

Eg(ω(X ))

≈
1
N
∑N

i=1 φ(X
i)ω(X i)

1
N
∑N

`=1 ω(X `)
=

N∑
i=1

ω(X i)∑N
`=1 ω(X `)︸ ︷︷ ︸

normalized weight

φ(X i) = τ SNIS
N .

As a by product we obtain the estimate

c = Eg(ω(X )) ≈ 1
N

N∑
`=1

ω(X `).
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A CLT for self-normalized IS estimators

One may establish the following CLT (see E2).

Theorem

Assume that σ2
g(ωφ) = Vg(ω(X )φ(X )) <∞. Then

√
N(τ SNIS

N − τ) d.−→ N(0, σ2
g(ω{φ− τ})/c2),

where, as usual, c = Eg(ω(X )).
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A CLT for self-normalized IS estimators (cont.)

Here the asymptotic standard deviation

σg(ω{φ− τ})/c

is in general intractable.
This quantity can however be estimated by

1 letting, for each of the draws X i ∼ g,

Zi = ω(X i)(φ(X i)− τSNIS
N ),

2 applying std to the vector containing all the Zis, and, finally,
3 dividing the result by the MC estimate of the normalizing

constant c.
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Control variates

Assume that we have at hand another real-valued random
variable Y , referred to as a control variate such that

(i) E(Y ) = m is known and
(ii) Y can be simulated at the same complexity as φ(X ).

Then we may set, for some α ∈ R,

Z = φ(X ) + α(Y −m),

so that

E(Z ) = E(φ(X )+α(Y −m)) = E(φ(X ))︸ ︷︷ ︸
=τ

+α (E(Y )−m)︸ ︷︷ ︸
=0

= τ.
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Control variates (cont.)

In addition, if φ(X ) and Y have covariance C(φ(X ),Y ) it
holds that

V(Z ) = V(φ(X ) + αY ) = C(φ(X ) + αY , φ(X ) + αY )

= V(φ(X )) + 2αC(φ(X ),Y ) + α2V(Y ).

Differentiating w.r.t. α and minimizing yields

0 = 2C(φ(X ),Y )+2αV(Y ) ⇔ α = α∗ = −C(φ(X ),Y )

V(Y )
,

which provides the optimal coefficient α∗ in terms of
variance.
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Control variates (cont.)

Plugging α∗ into the formula for V(Z ) gives

V(Z ) = V(φ(X )) + 2α∗C(φ(X ),Y ) + (α∗)2V(Y ) = . . .

= V(φ(X ))

(
1− C(φ(X ),Y )2

V(φ(X ))V(Y )

)
= V(φ(X )){1−ρ(φ(X ),Y )2},

where
ρ(φ(X ),Y )

def
=

C(φ(X ),Y )√
V(φ(X ))

√
V(Y )

is the correlation between φ(X ) and Y .
Consequently, we can expect large variance reduction if
|ρ(φ(X ),Y )| is close to 1.
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Example: another tricky integral

As an example, estimate

τ =

∫ π/2

0
exp(cos2(x))dx =

∫ π/2

0

π

2
exp(cos2(x))︸ ︷︷ ︸

=φ(x)

2
π︸︷︷︸

=f (x)

dx

= Ef (φ(X ))

using
Z = φ(X ) + α∗(Y −m),

where Y = cos2(X ) is a control variate with

m = E(Y ) =

∫ π/2

0
cos2(x)

2
π

dx = {integration by parts} = 1
2

and α̂∗ is an estimate of the optimal coefficient.
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Example: another tricky integral (cont.)

In MATLAB:

cos2 = @(x) cos(x).^2;
phi = @(x) (pi/2)*exp(cos2(x));
X = (pi/2)*rand(1,N);
tau = mean(phi(X));
Y = cos2(X);
m = 1/2;
alpha = - cov([phi(X)' Y'])./var(Y); % appr. optimal alpha
Z = phi(X) + alpha(1,2)*(Y - m);
tau_CV = mean(Z);
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Example: another tricky integral (cont.)
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Antithetic sampling

Again, assume that we wish to estimate τ = Ef (φ(X )) by
means of MC. For simplicity, introduce the short-hand notation
V def

= φ(X ), so that τ = E(V ).

Now, assume we can generate another variable V ′ such that
(i) E(V ′) = τ ,
(ii) V(V ′) = V(V ) (= σ2(φ)),
(iii) V ′ can be simulated at the same complexity as V .
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Antithetic sampling (cont.)

Then, letting

W def
=

V + V ′

2
,

it holds that E(W ) = τ .
Moreover,

V(W ) = V
(

V + V ′

2

)
=

1
4
(
V(V ) + 2C(V ,V ′) + V(V ′)

)
=

1
2
(
V(V ) + C(V ,V ′)

)
.
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Antithetic sampling (cont.)

Now, note that each W is twice as costly to generate as
each V .
Thus, for a fixed computation budget we can choose
between generating 2N Vs or N Ws.
In terms confidence bounds it is better to use the Ws if

λα/2
D(W )√

N
< λα/2

D(V )√
2N
⇔ 2V(W ) < V(V )

⇔ V(V ) + C(V ,V ′) < V(V )

⇔ C(V ,V ′) < 0.

Thus, if we can find V ′ such that the antithetic variables V
and V ′ are negatively correlated, then we will gain
computational work.
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Antithetic sampling (cont.)

For this purpose, the following theorem can be very useful.

Theorem
Let U be a random variable and let ϕ : R→ R be a monotone
function. Moreover, assume that there exists a non-increasing
transform T : R→ R such that U d.

= T (U). Then V = ϕ(U) and
V ′ = ϕ(T (U)) are identically distributed and

C(V ,V ′) = C(ϕ(U), ϕ(T (U))) ≤ 0.
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Example: a tricky integral (reconsidered)

We estimate again

τ =

∫ π/2

0
exp(cos2(x))dx =

∫ π/2

0

π

2
exp(cos2(x))︸ ︷︷ ︸

=φ(x)

2
π︸︷︷︸

=f (x)

dx

= E(φ(X )) = E(ϕ(U)),

where

{
U = cos2(X ),

ϕ(u) = π
2 exp(u).

Now letting T (u) = 1− u yields

T (U) = 1− cos2(X ) = sin2(X )

= cos2
(π

2
− X

)
d.
= cos2(X ) = U.
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Example: a tricky integral (reconsidered)

Since in addition T (u) = 1− u is non-increasing and
ϕ(u) = π

2 exp(u) monotone, the theorem above applies.
Thus,

C

π2 exp(cos2(X )),
π

2
exp(1− cos2(X )︸ ︷︷ ︸

=sin2(X)

)

 ≤ 0,

and we may apply antithetic sampling with
V = π

2 exp(cos2(X )),

V ′ = π
2 exp(sin2(X )),

W = V+V ′

2 .
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Example: a tricky integral (reconsidered) (cont.)

In Matlab:

cos2 = @(x) cos(x).^2;
phi = @(x) (pi/2)*exp(cos2(x));
X = (pi/2)*rand(1,N);
tau = mean(phi(X));
XX = (pi/2)*rand(1,N/2); % only half the sample size
V_1 = (pi/2)*exp(cos2(XX));
V_2 = (pi/2)*exp(1 - cos2(XX));
W = (V_1 + V_2)/2;
tau_AS = mean(W);
UB = tau + norminv(0.975)*std(phi(X))./sqrt(N);
LB = tau - norminv(0.975)*std(phi(X))./sqrt(N);
UB_AS = tau_AS + norminv(0.975)*std(W)./sqrt(N/2);
LB_AS = tau_AS - norminv(0.975)*std(W)./sqrt(N/2);
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Example: a tricky integral (reconsidered) (cont.)
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