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Last time: SIS + ISR

A simple—but revolutionary!—idea: duplicate/kill particles
with large/small weights! (Gordon et al., 1993)
The most natural approach to such selection is to simply
draw new particles (X̃ i

0:n)
N
i=1 among the SIS-produced

particles (X i
0:n)

N
i=1 with probabilities given by the

normalized importance weights.
Formally, this amounts to set, for i ← 1,2, . . . ,N,

X̃ i
0:n = X j

0:n w. pr.
ωj

n∑N
`=1 ω

`
n
.
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Last time: SIS + ISR

After this, the resampled particles (X̃ i
0:n)

N
i=1 are assigned

equal weights ω̃i
n = 1 and we replace

N∑
i=1

ωi
n∑N

`=1 ω
`
n
φ(X i

0:n) by
1
N

N∑
i=1

φ(X̃ i
0:n).

Multinomial resampling does not add bias:

Corollary
For all N ≥ 1 and n ≥ 0,

E

(
1
N

N∑
i=1

φ(X̃ i
0:n)

)
= E

(
N∑

i=1

ωi
n∑N

`=1 ω
`
n
φ(X i

0:n)

)
.
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Last time: . . . = SIS with resampling (SISR)

After selection, we proceed with standard SIS and move
the selected particles (X̃ i

0:n)
N
i=1 according to gn(xn+1 | x0:n).

The full scheme goes as follows. Given (X i
0:n, ω

i
n)

N
i=1,

1 (selection) draw, with replacement, (X̃ i
0:n)

N
i=1 among

(X i
0:n)

N
i=1 according to probabilities (ωi

n/
∑N

`=1 ω
`
n)

N
i=1

2 (mutation) draw, for all i , X i
n+1 ∼ gn(xn+1 | X̃ i

0:n),
3 set, for all i , X i

0:n+1 = (X̃ i
0:n,X

i
n+1), and

4 set, for all i ,

ωi
n+1 =

zn+1(X i
0:n+1)

zn(X i
0:n)gn(X i

n+1 | X i
0:n)

.
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Linear/Gaussian HMM, SISR implementation (cont’d)
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Filtered means for Kalman filter, SIS, and SISR

Time step

Figure: Comparison of SIS (◦) and SISR (∗, blue) with exact values
(∗, red) provided by the Kalman filter.
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Overview of MCMC

Markov Chain Monte Carlo (MCMC)

Basic idea: To sample from a density f we construct a
Markov chain having f as stationary distribution. A law of
large numbers for Markov chains guarantees convergence.
If f is complicated and/or defined on a space of high
dimension this is often much easier than
transformation-based methods or rejection sampling.
The samples will however not be independent.
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Overview of MCMC

MCMC (cont.)

MCMC is currently the most common method for sampling
from complicated and/or high dimensional distributions.
Dates back to the 1950’s with two key papers being

Equations of state calculations by fast computing machines
(Metropolis et al., 1953) and
Monte Carlo sampling methods using Markov chains and
their applications (Hastings, 1970).
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More on Markov chains (Ch. 5.1–5.2)

Prelude: Markov chains

Recall that a Markov chain on X ⊆ Rd is a stochastic
process (Xk )k≥0 taking values in X such that

P(Xk+1 ∈ A | X0,X1, . . . ,Xk ) = P(Xk+1 ∈ A | Xk )

for all A ⊆ X. We call the chain time homogeneous if the
conditional distribution of Xk+1 given Xk does not depend
on k .
The distribution of Xk+1 given Xk = x determines
completely the dynamics of the process, and the density q
of this distribution is called the transition density of
(Xk )k≥0. Consequently,

P(Xk+1 ∈ A | Xk = xk ) =

∫
A

q(xk+1 | xk )dxk+1.
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More on Markov chains (Ch. 5.1–5.2)

Markov chains (cont.)

Let fn(x0, x1, . . . , xn) be the joint density of X0,X1, . . . ,Xn.

Theorem
Let (Xk )k≥0 be Markov with initial distribution χ and transition
density q. Then

(i) fn(x0, x1, . . . , xn) = χ(x0)
n−1∏
k=0

q(xk+1 | xk ) (n ≥ 1),

(ii) fn(xn | x0) =

∫
· · ·
∫ n−1∏

k=0

q(xk+1 | xk )dx1 · · · dxn−1 (n > 1).

Equation (ii) is referred to as the Chapman-Kolmogorov
equation.

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (14)



logga

Last time: SMC methods Markov chain Monte Carlo (Ch. 5) What’s next?

More on Markov chains (Ch. 5.1–5.2)

Stationary Markov chains

A distribution π on X is said to be stationary if∫
q(x | z)π(z)dz = π(x) (global balance).

If χ = π it holds that

f1(x1) =

∫
q(x1 | x0)χ(x0)dx0 =

∫
q(x1 | x0)π(x0)dx0 = π(x1)

⇒ f2(x2) =

∫
q(x2 | x1)f1(x1)dx1 =

∫
q(x2 | x1)π(x1)dx1 = π(x2)

⇒ . . .⇒ f (xn) = π(xn), ∀n.

Thus, if starting in π, the chain will always stay in π. In this
case we call also the chain stationary.

Johan Westerborn KTH Royal Institute of Technology
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More on Markov chains (Ch. 5.1–5.2)

Detailed balance

Let (Xk )k≥0 have transition density q and let λ be a
distribution satisfying the detailed balance condition

λ(x)q(z | x) = λ(z)q(x | z), ∀x , z ∈ X.

Interpretation:

“probability flow” x → z = “probability flow” z → x .

The following holds:

Theorem
Assume that λ satisfies detailed balance. Then λ is a stationary
distribution.

The converse is not true.
Johan Westerborn KTH Royal Institute of Technology
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More on Markov chains (Ch. 5.1–5.2)

Ergodic Markov chains

The following definitions will be of importance for the
coming developments.

Definition
A Markov chain (Xn)n≥0 with stationary distribution π is called

(i) ergodic if for all initial distributions χ,

sup
A⊆X
|P(Xn ∈ A)− π(A)| → 0, as n→∞.

(ii) uniformly ergodic if there is ρ < 1 such that for all initial
distributions χ,

sup
A⊆X
|P(Xn ∈ A)− π(A)| ≤ ρn.
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More on Markov chains (Ch. 5.1–5.2)

Ergodic Markov chains (cont.)

The following theorem provides geometric ergodicity under
the so-called Doeblin condition (∗):

Theorem (uniform ergodicity)
Assume that there exists a density µ and a constant ε > 0 such
that for all x , z ∈ X,

q(z | x) ≥ εµ(z). (∗)

Then the chain (Xn)n≥0 is uniformly ergodic for

ρ = 1− ε.

Johan Westerborn KTH Royal Institute of Technology
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More on Markov chains (Ch. 5.1–5.2)

Uniformly ergodic Markov chains

In other words, uniform ergodicity means that the chain
forgets its initial distribution geometrically fast.
The condition (∗) is typically satisfied when X is compact
(which is e.g. the case when X is finite set); the previous
result can however be established under weaker versions
of the condition that hold also for non-compact state
spaces.
Uniform ergodicity implies in general that for a large class
of objective functions φ,

|C(φ(Xm), φ(Xn))| ≤ Cρ̃|n−m|

for some ρ̃ < 1 and some constant C > 0 depending on φ.
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More on Markov chains (Ch. 5.1–5.2)

A coupling-based proof

Define the transition density

q̃(xk+1 | xk ) =
q(xk+1 | xk )− εµ(xk+1)

1− ε
(≥ 0 by (∗))

and let χ and χ′ be two initial distributions.
Define two new Markov chains (Xk )k≥0 and (X ′k )k≥0 as
follows:

Draw X0 ∼ χ and X ′0 ∼ χ′.
given Xk and X ′k , toss an ε-coin. If

(i) head (w. pr. ε), draw Xk+1 ∼ µ(xk+1) and set X ′
k+1 = Xk+1

(⇒ coupling).
(ii) tail (w. pr. 1− ε), draw Xk+1 ∼ q̃(xk+1 | Xk ). In addition, draw

independently X ′
k+1 ∼ q̃(xk+1 | X ′

k ); however, if the chains
have coupled earlier, keep X ′

k+1 = Xk+1.

Johan Westerborn KTH Royal Institute of Technology
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More on Markov chains (Ch. 5.1–5.2)

Example: a chain on a discrete set

Let X = {1,2,3} and q(1|1) = 0.4 q(2|1) = 0.4 q(3|1) = 0.2
q(1|2) = 0 q(2|2) = 0.7 q(3|2) = 0.3
q(1|3) = 0 q(2|3) = 0.1 q(3|3) = 0.9

 .

This chain has π = (0,0.25,0.75) as stationary distribution
(check global balance).
Moreover, the chain satisfies (∗) with

ε = 0.2 and µ = (0,0.5,0.5).

It is thus uniformly ergodic.
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More on Markov chains (Ch. 5.1–5.2)

Example: a chain on a discrete set (cont.)

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time lag

Estimated correlation

Figure: Estimated correlation obtained by simulating the chain 1000
time steps.
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More on Markov chains (Ch. 5.1–5.2)

A law of large numbers for Markov chains

In the case where the states of (Xk ) are only weakly
dependent there is, just like in the case of independent
variables, an LLN:

Theorem (law of large numbers for Markov chains)

Let (Xn)n≥0 be a stationary Markov chain (with stationary
distribution π) and φ a function s.t.

C(φ(X0), φ(Xn))→ 0 as n→∞.

Then

1
n

n∑
k=1

φ(Xk )
P→
∫
φ(x)π(x)dx as n→∞.
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More on Markov chains (Ch. 5.1–5.2)

A law of large numbers for Markov chains (cont.)

Note that
∫
φ(x)π(x)dx is the mean of φ(Xn) under π.

In particular, uniformly ergodic Markov chains satisfy the
condition of the LLN.
The assumption that the chain is initialized in the stationary
distribution can, by assuming ergodicity, be removed
straightforwardly.
There are stronger versions of the previous LLN, e.g. for
convergence with probability one (“almost sure
convergence”).
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More on Markov chains (Ch. 5.1–5.2)

Example: a chain on a discrete set reconsidered

0 5000 10000 15000
2.74

2.76

2.78

2.8

2.82

2.84

2.86

2.88

2.9

2.92
Convergence of the mean

time

Figure: Plot of means 1
n

∑n
k=1 Xk with increasing n. Here the mean of

the stationary distribution is 1 · 0 + 2 · 0.25 + 3 · 0.75 = 2.75 (red line).
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Next week

Now we have gained enough understanding of Markov
chains to be able to understand MCMC in some detail.
Thus, tomorrow and next week we will deal with the main
objective of MCMC, namely how to, given a density f ,
construct a Markov chain (Xk )k≥0 having f as stationary
distribution.
Focus will be set on

the Metropolis-Hastings algorithm and
the Gibbs sampler.

We will also work out a full example of an implementation.
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