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Hand in 1

Some small notes:
Make sure to vectorize the code. That is do not use any for
loops over the particles!
Run the algorithms first on your own simulated data before
runing it on the provided data.

Always provide numerical values (not only figures),
preferably in a table.
Solve the problem!
Focus on describing precisely how you obtained your
results rather than on describing the general theory. But be
concise!
Analyze your results.
A figure caption cannot be too long!
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Last time: Markov chain Monte Carlo (MCMC)

Basic idea: to sample from a density f we construct a
Markov chain having f as stationary distribution. A law of
large numbers for Markov chains guarantees convergence.
If f is complicated and/or high dimensional, this is often
easier than transformation methods and rejection
sampling.
The price is it that samples will be statistically dependent.
MCMC is currently the most common method for sampling
from complicated and/or high dimensional distributions.

Johan Westerborn KTH Royal Institute of Technology
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Last time: stationary Markov chains

We called a distribution π stationary if∫
q(x | z)π(z)dz = π(x) (global balance).

For a stationary distribution π it holds that

χ = π ⇒ fn(xn) = π(xn), ∀n,

(where χ denotes the initial distribution). Thus, if the chain
starts in the stationary distribution, it will always stay in the
stationary distribution. In this case we call also the chain
stationary.

Johan Westerborn KTH Royal Institute of Technology
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Last time: detailed balance

Let (Xk )k≥0 have transition density q and let λ be a
distribution satisfying the detailed balance condition

λ(x)q(z | x) = λ(z)q(x | z), ∀x , z ∈ X.

Then the following holds true.

Theorem
Assume that λ satisfies detailed balance for q. Then λ is a
stationary distribution for q.

The converse is not true in general.

Johan Westerborn KTH Royal Institute of Technology
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Last time: ergodic Markov chains

We introduced the following definitions.

Definition
A Markov chain (Xn)n≥0 with stationary distribution π is called

(i) ergodic if for all initial distributions χ,

sup
A⊆X
|P(Xn ∈ A)− π(A)| → 0, as n→∞.

(ii) uniformly ergodic if there is ρ < 1 such that for all initial
distributions χ,

sup
A⊆X
|P(Xn ∈ A)− π(A)| ≤ ρn.

Johan Westerborn KTH Royal Institute of Technology
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Last time: ergodic Markov chains (cont.)

The following theorem provides geometric ergodicity under
the so-called Doeblin condition (∗):

Theorem (uniform ergodicity)
Assume that there exists a density µ and a constant ε > 0 such
that for all x , z ∈ X,

q(z | x) ≥ εµ(z). (∗)

Then the chain (Xn)n≥0 is uniformly ergodic for

ρ = 1− ε.

Johan Westerborn KTH Royal Institute of Technology
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Uniformly ergodic Markov chains

In other words, uniform ergodicity means that the chain
forgets its initial distribution geometrically fast.
The condition (∗) is typically satisfied when X is compact
(which is e.g. the case when X is finite set); the previous
result can however be established under weaker versions
of the condition that hold also for non-compact state
spaces.
Uniform ergodicity implies in general that for a large class
of objective functions φ,

|C(φ(Xm), φ(Xn))| ≤ Cρ̃|n−m|

for some ρ̃ < 1 and some constant C > 0 depending on φ.

Johan Westerborn KTH Royal Institute of Technology
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A coupling-based proof

Define the transition density

q̃(xk+1 | xk ) =
q(xk+1 | xk )− εµ(xk+1)

1− ε
(≥ 0 by (∗))

and let χ and χ′ be two initial distributions.
Define two new Markov chains (Xk )k≥0 and (X ′k )k≥0 as
follows:

Draw X0 ∼ χ and X ′0 ∼ χ′.
given Xk and X ′k , toss an ε-coin. If

(i) head (w. pr. ε), draw Xk+1 ∼ µ(xk+1) and set X ′k+1 = Xk+1

(⇒ coupling).
(ii) tail (w. pr. 1− ε), draw Xk+1 ∼ q̃(xk+1 | Xk ). In addition, draw

independently X ′k+1 ∼ q̃(xk+1 | X ′k ); however, if the chains
have coupled earlier, keep X ′k+1 = Xk+1.

Johan Westerborn KTH Royal Institute of Technology
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Example: a chain on a discrete set

Let X = {1,2,3} and q(1|1) = 0.4 q(2|1) = 0.4 q(3|1) = 0.2
q(1|2) = 0 q(2|2) = 0.7 q(3|2) = 0.3
q(1|3) = 0 q(2|3) = 0.1 q(3|3) = 0.9

 .

This chain has π = (0,0.25,0.75) as stationary distribution
(check global balance).
Moreover, the chain satisfies (∗) with

ε = 0.2 and µ = (0,0.5,0.5).

It is thus uniformly ergodic.

Johan Westerborn KTH Royal Institute of Technology
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Example: a chain on a discrete set (cont.)
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Figure: Estimated correlation obtained by simulating the chain 1000
time steps.
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A law of large numbers for Markov chains

In the case where the states of (Xk ) are only weakly
dependent there is, just like in the case of independent
variables, an LLN:

Theorem (law of large numbers for Markov chains)

Let (Xn)n≥0 be a stationary Markov chain (with stationary
distribution π) and φ a function s.t.

C(φ(X0), φ(Xn))→ 0 as n→∞.

Then

1
n

n∑
k=1

φ(Xk )
P→

∫
φ(x)π(x)dx as n→∞.
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Example: a chain on a discrete set reconsidered

0 5000 10000 15000
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time

Figure: Plot of means 1
n

∑n
k=1 Xk with increasing n. Here the mean of

the stationary distribution is 1 · 0 + 2 · 0.25 + 3 · 0.75 = 2.75 (red line).
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The principle of MCMC

The LLN for Markov chains makes it possible to estimate
expectations

τ = E(φ(X )) =

∫
X
φ(x)f (x)dx

by simulating, say, N steps, a Markov chain (Xk ) with
stationary distribution f and letting

τMCMC
N =

1
N

N∑
k=1

φ(Xk )→ τ as N →∞.

This is the main principle of MCMC methods.

Johan Westerborn KTH Royal Institute of Technology
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The principle of MCMC (cont.)

In order for the approach to be practically useful, we
require that

simulating the chain (Xk ) is an easily implementable
process.
the stationary distribution of (Xk ) coincides indeed with the
desired distribution f .
the chain (Xk ) converges to f irrespectively of the initial
value X1.
the target density f needs to be known only up to a
normalizing constant.

We will discuss two major classes of such algorithms,
namely the Metropolis-Hastings algorithm (today) and the
Gibbs sampler (next lecture).

Johan Westerborn KTH Royal Institute of Technology
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The Metropolis-Hastings (MH) algorithm

In the following we assume that we are able to simulate
from a transition density r(z | x), referred to as the
proposal kernel, on X.
The MH algorithm simulates recursively a sequence of
draws (Xk ), forming a Markov chain on X, through the
following mechanism: given Xk ,

draw X ∗ ∼ r(z | Xk ) and

set Xk+1 =

X ∗ w. pr. α(Xk ,X ∗)
def
= 1 ∧ f (X ∗)r(Xk | X ∗)

f (Xk )r(X ∗ | Xk )
,

Xk otherwise.

(Here we used the notation a ∧ b def
= min{a,b}.) The

scheme is initialized by drawing X1 from some arbitrary
initial distribution χ.

Johan Westerborn KTH Royal Institute of Technology
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The MH algorithm: pseudo-code

draw X1 ∼ χ;
for i = 1→ (N − 1) do

draw X ∗ ∼ r(z | Xk );
set α← 1 ∧ f (X∗)r(Xk |X∗)

f (Xk )r(X∗|Xk )
;

draw U ∼ U(0,1);
if U ≤ α then

Xk+1 ← X ∗;
else

Xk+1 ← Xk ;
end

end
set τMCMC

N ←
∑N

k=1 φ(Xk )/N;
return τMCMC

N

Johan Westerborn KTH Royal Institute of Technology
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A closer look at α

Recall that

α(Xk ,X ∗) = 1 ∧ f (X ∗)r(Xk | X ∗)
f (Xk )r(X ∗ | Xk )

is the probability of accepting the candidate X ∗ given the
old state Xk .
First, ignore the transition kernel r . Then the ratio
f (X ∗)/f (Xk ) says:

accept (keep) the proposed state X ∗ if it is “better” than the
old state Xk (as measured by f );
otherwise, if the proposed state is “worse” than the old one,
accept it only with a probability proportional to f (X ∗)/f (Xk ).

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (21)



logga

Last time: Introduction to MCMC The Metropolis-Hastings algorithm (Ch. 5.3)

A closer look at α

Recall that

α(Xk ,X ∗) = 1 ∧ f (X ∗)r(Xk | X ∗)
f (Xk )r(X ∗ | Xk )

is the probability of accepting the candidate X ∗ given the
old state Xk .
First, ignore the transition kernel r . Then the ratio
f (X ∗)/f (Xk ) says:

accept (keep) the proposed state X ∗ if it is “better” than the
old state Xk (as measured by f );
otherwise, if the proposed state is “worse” than the old one,
accept it only with a probability proportional to f (X ∗)/f (Xk ).

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (21)



logga

Last time: Introduction to MCMC The Metropolis-Hastings algorithm (Ch. 5.3)

A closer look at α (cont.)

At the same time we also want to explore the state space,
where some states may be easier to reach than others.
This is compensated for by the factor r(Xk | X ∗)/r(X ∗ | Xk )
in the acceptance probability:

α(Xk ,X ∗) = 1 ∧ f (X ∗)r(Xk | X ∗)
f (Xk )r(X ∗ | Xk )

.

Consequently,
if it is easy to reach X ∗ from Xk , the denominator r(X ∗ | Xk )
will reduce the acceptance probability;
if it is easy to return to Xk from X ∗, the numerator
r(Xk | X ∗) will increase the acceptance probability.

Johan Westerborn KTH Royal Institute of Technology
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Convergence of the MH algorithm

The following result is fundamental.

Theorem (detailed balance of the MH sampler)
The MH sampler satisfies detailed balance for the target
density f .

Consequently, the following holds true.

Corollary (global balance of the MH sampler)

The Markov chain generated by the MH sampler allows f as a
stationary distribution.

Johan Westerborn KTH Royal Institute of Technology
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Convergence of the MH algorithm (cont.)

The MH algorithm is in general not uniformly ergodic.
However, under weak assumptions one may prove that the
MH algorithm is geometrically ergodic, i.e., there exist
ρ < 1 and a function C on X such that for all initial states
χ = δx ,

sup
A⊆X
|P(Xn ∈ A)− π(A)| ≤ C(x)ρn.

Also geometrically ergodic Markov chains satisfy the LLN.
Given some starting value X1, there will be, say, B
iterations before the distribution of the chain can be
considered as “sufficiently close” to the stationary
distribution. The values (Xk )

B
k=1 are referred to as burn-in

and are typically discarded in the analysis.

Johan Westerborn KTH Royal Institute of Technology
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Different types of proposal kernels

There are a number of different ways of constructing the
proposal kernel r .
The three main classes are

independent proposals,
symmetric proposals, and
multiplicative proposals.
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Independent proposal

Using an independent proposal, candidates are drawn
from r(z) independently of the current state x .
The acceptance probability reduces to

α(x , z) = 1 ∧ f (z)r(x)
f (x)r(z)

.

Here it is required that {x : f (x) > 0} ⊆ {x : r(x) > 0} to
ensure convergence.
If we take r(x) = f (x), which is of course infeasible in
practice, the acceptance probability reduces to 1 and we
get independent samples from f .

Johan Westerborn KTH Royal Institute of Technology
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Symmetric proposal

For a symmetric proposal it holds that r(z | x) = r(x | z) for
all (x , z) ∈ X2.
In this case the acceptance probability simplifies to

α(x , z) = 1 ∧ f (z)
f (x)

.

Commonly this is obtained by letting X ∗ = Xk + ε (random
walk proposal) with, e.g.,

ε ∼ N(0, σ2) or
ε ∼ U(−a,a).
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Multiplicative proposals

An easy way of obtaining an asymmetric proposal where
the size of the jump depends on the current state Xk = x is
to take

X ∗ = xε,

where ε is drawn from some density p.
The proposal kernel now becomes r(z | x) = p(z/x)/x ,
yielding the acceptance probability

α(x , z) = 1 ∧ f (z)p(x/z)/z
f (x)p(z/x)/x

.
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Normalizing constants

Since the target density f enters the acceptance probability
α(x , z) only via the ratio f (z)/f (x), we only need to know f
up to a normalizing constant (cf. rejection sampling or
self-normalized importance sampling).
This is one of the main strengths of the MH sampler.
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Example: the tricky distribution (again)

As an example we estimate the variance τ = E(X 2) of

f (x) = exp(cos2(x))/c, x ∈ (−π/2, π/2),

where c > 0 is unknown, using the MH algorithm.
We propose new candidates according to a simple
symmetric random walk initialized in the origin, i.e.,

r(z | x) = N(z; x , σ2)

and X1 = 0.
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Example: the tricky distribution (again) (cont.)

z = @(x) exp(cos(x).^2).*(x > -pi/2).*(x < pi/2);
burn_in = 2000;
M = N + burn_in
X = zeros(1,M);
X(1) = 0;
for k = 1:(M - 1),

cand = X(k) + randn*sigma;
alpha = z(cand)/z(X(k));
if rand <= alpha,

X(k + 1) = cand;
else

X(k + 1) = X(k);
end

end
tau = mean(X(burn_in:M).^2);
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Example: a tricky integral (cont.)
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Figure: Comparison between the true density and the histogram of
Xk , k = 2001, . . . ,22000.
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Example:a tricky integral (cont.)
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Figure: MH output (τN) for increasing N (blue) and true value (red).
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Next time

Next time we will
prove the MH detailed balance theorem above and
move on to the Gibbs sampler.
Notice that next week the following change in the regular
shcedule:

there is a lecture on wednesday
the exercise class is on thrusday
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