

Avd. Matematisk statistik

KTH Teknikvetenskap

Sf 2955: Computer intensive methods : SCALE PARAMETER/ Timo Koski

The notation

 $F(x;\theta)$

denotes a distribution function that depends on a parameter θ . For example,

$$F(x;\theta) = \begin{cases} 1 - e^{-x/\theta} & \text{if } x \ge 0\\ 0 & \text{if } x < 0, \end{cases}$$

is the distribution function of the exponential distribution $\text{Exp}(\theta)$.

1 Definition of a Scale Parameter

We define a scale parameter.

Definition 1.1 Assume $\theta > 0$ in $F(x; \theta)$. Then θ is a scale parameter, if it holds for all x that

$$F(x;\theta) = H\left(\frac{x}{\theta}\right),\tag{1.1}$$

where H(x) is a distribution function.

To take an example, θ is scale parameter in the exponential distribution $\text{Exp}(\theta)$, as we have

$$F(x;\theta) = H\left(\frac{x}{\theta}\right),$$

where

$$H(x) = \begin{cases} 1 - e^{-x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0. \end{cases}$$

2 **Properties**, Pivotal Variables

We observe two lemmas.

Lemma 2.1 Assume $X \in F(x; \theta)$. θ is a scale parameter if and only if the distribution of

 $\frac{X}{\theta}$

does not depend on θ .

Proof: \Rightarrow : Assume θ is a scale parameter. Then the distribution of $\frac{X}{\theta}$ is given by

$$P\left(\frac{X}{\theta} \le z\right) = P\left(X \le \theta z\right)$$

since $\theta > 0$ by definition. Then, as we assume that θ is a scale parameter,

$$P(X \le \theta z) = F(\theta z; \theta) = H\left(\frac{\theta z}{\theta}\right) = H(z),$$

or

$$P\left(\frac{X}{\theta} \le z\right) = H(z)$$

which says that $\frac{X}{\theta}$ has distribution which does not depend on θ . \Leftarrow : We assume that $\frac{X}{\theta}$ has distribution, say H, which does not depend on $\theta > 0$. Then

$$F(x;\theta) = P\left(X \le x;\theta\right) = P\left(\frac{X}{\theta} \le \frac{x}{\theta};\theta\right)$$

since $\theta > 0$. But by assumption

$$P\left(\frac{X}{\theta} \le \frac{x}{\theta}; \theta\right) = H\left(\frac{x}{\theta}\right)$$

where the distribution function H(z) does not depend on θ . But then we have for any x shown that

$$F(x;\theta) = H\left(\frac{x}{\theta}\right)$$

which in view of (1.1) gives the claim as asserted. This lemma says that $\frac{X}{\theta}$ is a *pivotal variable*.

Remark 2.1 Note that a pivotal variable need not be a statistic – the variable can depend on parameters of the model, but its distribution must not. If it is a statistic, then it is known as an *ancillary statistic*. Pivotal quantities are used to the construction of test statistics, e.g., Student's t-statistic is pivotal for a normal distribution with unknown variance (and mean). Pivotal variables provide in addition a method of constructing confidence intervals, and the use of pivotal quantities improves performance of the bootstrap, as defined later.

Lemma 2.2 Assume $F(x;\theta)$ has a density $\frac{d}{dx}F(x;\theta) = f(x;\theta)$ for all x. Then θ is a scale parameter if and only if

$$f(x;\theta) = \frac{1}{\theta}g\left(\frac{x}{\theta}\right), \qquad (2.2)$$

where g is a probability density.

Proof: \Rightarrow : If $F(x;\theta)$ has an integrable derivative and θ is a scale parameter, then it holds from (1.1) that

$$f(x;\theta) = \frac{d}{dx}F(x;\theta) = \frac{d}{dx}H\left(\frac{x}{\theta}\right) = \frac{1}{\theta}g\left(\frac{x}{\theta}\right)$$

where we have set $g(x) = \frac{d}{dx}H(x)$, which is a density function, as H is a distribution function.

 \Leftarrow : We assume that

$$f(x;\theta) = \frac{1}{\theta}g\left(\frac{x}{\theta}\right).$$

Then

$$F(x;\theta) = \int_{-\infty}^{x} f(u;\theta) du = \frac{1}{\theta} \int_{-\infty}^{x} g\left(\frac{u}{\theta}\right) du.$$

Here we make a change of variable $t = \frac{u}{\theta}$, $du = \theta dt$ and thus

$$\frac{1}{\theta} \int_{-\infty}^{x} g\left(\frac{u}{\theta}\right) du = \int_{-\infty}^{\frac{x}{\theta}} g\left(t\right) dt = G\left(\frac{x}{\theta}\right).$$

where $\frac{d}{dx}G(x) = g(x)$. In other words we have obtained for every x that

$$F(x;\theta) = G\left(\frac{x}{\theta}\right),$$

and since G(x) is a distribution function, the desired assertion follows by (1.1).

3 Examples and the Scale-Free property

We give first some further examples.

1. $X \in N(\mu\sigma, \sigma^2)$. We guess that σ is a scale parameter. The pertinent density is

$$f(x;\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu\sigma)^2}{2\sigma^2}}$$

and some elementary algebra gives

$$f(x;\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\left(\frac{x}{\sigma}-\mu\right)^2}{2}} = \frac{1}{\sigma} g\left(\frac{x}{\sigma}\right),$$

where g is the density of $N(\mu, 1)$ or

$$g(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-\mu)^2}{2}}$$

and the desired conclusion follows by (2.2).

2. $X \in R(0, \theta)$. Then we take $x \in [0, 1]$ and get

$$P\left(\frac{X}{\theta} \le x\right) = P\left(X \le \theta x\right) = \frac{\theta x}{\theta} = x$$

as the distribution function of $R(0, \theta)$ is $F(z) = \frac{z}{\theta}$. The desired conclusion follows now from the first lemma. We have shown that $\frac{X}{\theta} \in R(0, 1)$, which is, however, immediate from the definitions.

3. Finally, we take the Weibull distribution, so that

$$F(x;\lambda) = \begin{cases} 1 - e^{-(x/\lambda)^k} & \text{if } x \ge 0\\ 0 & \text{if } x < 0. \end{cases}$$

For k = 1 gives the exponential distribution, and k = 2 gives the Rayleigh distribution. It is obvious that $\lambda > 0$ is scale parameter.

Suppose that $X \in \text{Exp}(\theta)$ is a lifetime measured in seconds. Then $\theta = E[X]$ is also measured in seconds. We might convert seconds to minutes. But the probability

$$P(X \le x) = H\left(\frac{x}{\theta}\right),$$

is the same whether we measure in minutes or seconds, i.e., it is invariant with respect to scale or the units of measurement, as is quite reasonable.