
Computer problems 2:

Markov Chain Monte Carlo methods

Getting Started

If you work on the NADA computer system: Before entering Matlab, copy the file efronmain.m
to your own working directory:

cp /info/fysikkurser/matstat/efronmain.m efronmain.m

matlab

Here efronmain.m creates paths to all functions you need for this assignment. It should be
processed as soon as you enter Matlab. The software is written by Finn Lindgren and the
assignments on MCMC are constructed by Ola Hössjer and Finn Lindgren.

You can also get the files from the course home page.

1 Simulating the hard core model

χ = I × J-lattice with 0:s and 1:s and let the state space be
E = {x ∈ χ two neighbours are both not 1 1}.
The allowed configurations are therefore I × J-matrices of 0:s and 1:s but where there can
not be two 1:s next to each other vertically och side-ways. If we take J = I = 10 we have
a lattice with 100 points and we realize that it is not even easy to calculate the number of
”allowed” configurations.




0 1 0 0
1 0 1 0
0 0 0 1





is an ”allowed” matrix 


1 1 0 0
1 0 0 0
0 0 0 1





is not ”allowed”. We want to choose an ”allowed” matrix with the same probability for each
of the ”allowed” matrices of a fixed size.

Let π be a distribution on χ which is 0 outside E, e.g. π(x)=constant for x ∈ E and 0
otherwise (uniform distribution on E). Notice that we in fact do know how large E is!

As a proposal distribution (i.e. q(x, y)) we can take:

Choose node (i, j) at random with probability 1/IJ . Choose the value in the node as 0 or 1
with probabiliy 1/2 each.

Possibly we get y /∈ E i.e. that the proposal gives a configuration which is not allowed, but
then π(y) = 0 and therefore α(x, y) = 0, i.e. such a proposal is ignored and the chain stays
in the same position.
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If y ∈ E (i.e. an ”allowed” configuration) we accept the proposal since

α(x, y) = min

(
1,

π(y)q(y, x)

π(x)q(x, y)

)
= 1

since q(x, y) = q(y, x) and π(x) = π(y).

The chain is obviously irreducible and aperiodic, i. e. it is ergodic. We see this is true since
given two configurations x and y we can start by removing all 1:s in x and then add the 1:s
in y - this shows the irreducability. Obviously we have a positive probability to stay in the
same configuration which shows aperiodicity. Since the state space is finite it is therefore
ergodic.

1) We are interested in the number of 1:s in such a matrix selected at random. This number
is of course random.
Calculate the exact distribution for the number of 1:s for 2 × 3-matrices by enumeration of
all possible cases.

2) We now study 10×10-matrices. Use simulation as above to estimate the expected number
of 1:s in such a randomly selected matrix and it variance.

Let further
U=the number of 1:s in the row with the maximum number of 1:s and
V =the number of 1:s in the row with the minimum number of 1:s and
X = U −V , i.e. the difference in the number of 1:s between the row with maximum and the
row with minimum number of 1:s. What values are possible for this random variable X? De-
termine (approximately) the probability distribution of X by MCMC-simulation. Calculate
also (approximately) the mean value and variance in this distribution.
Hint: Put a frame of 0:s around your 10 × 10-matrix in order to get rid of boundary effect.

Note that the procedures max and sum in Matlab work column-wise if they are applied to
matrices.

2 Simulating a Bivariate Normal Distribution

2.1 Independent Components

You will use snorm (or possibly Esnorm) to generate samples from a bivariate normal distri-
bution

N2

(
(m1, m2)

T ,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
= N2 (m, V ) ,

with either of the Choleski, Gibbs or Metropolis-Hastings random walk algorithms. Take a
look at the function first:

>> help snorm

A bivariate normal distribution has 5 parameters, and they are gathered in th. Simulate 200
observations from a standard normal bivariate distribution using the Choleski method and
plot the result:
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>> th = [0 0 1 1 0]

>> [X ml cl] = snorm(th,200,’Ch’)

>> plot(X(:,1),X(:,2),’.’)

The ouputs ml and cl are loss functions for estimation of the mean and covariance matrix:

ml = ‖V −1/2(mean(X) − m)‖

cl = ‖V −1/2(cov(X) − V )V −1/2‖,

where mean and cov are MATLAB functions operating on the output sample X and ‖ · ‖ is
the Euclidean norm in two and four dimensions respectively. By this we mean

‖(v1, v2)
T − (u1, u2)

T‖ =
√

(v1 − u1)2 + (v2 − u2)2

and
∥∥∥∥

(
a11 a12

a21 a22

)
−

(
b11 b12

b21 b22

)∥∥∥∥ =

√√√√
2∑ ∑

i,j=1

(aij − bij)2.

Now ml and cl measure the quality of the generated random vectors in two different ways:
How much does mean(X) (the sample mean) and cov(X) (the sample covariance matrix)
differ from the true expected value m and covariance matrix V ?

Since the Choleski method generates perfect i.i.d. random vectors we can derive the distri-
butions of ml and cl (although the second one is more difficult).

1. Assume first a parameter vector th = [0 0 1 1 0]. Using the fact that mean(X) ∈
N2((0, 0)T , I2/n), it can be shown that ml is Rayleigh distributed with density function

f(x) = nxe−nx2/2, x > 0.

Compute the expected value of ml. (Hint: Write the integrand as xf(x) = x ·nxe−nx2/2

and use integration by parts. Further, the formula
∫ ∞

0
e−t2/2dt =

√
π/2 will be useful.)

2. Prove that the distribution of ml is invariant (does not depend on th). This means
that the conclusion in 1 holds for any bivariate normal distribution. (Hint: Use the
representation X(k, :) = m+V

1/2
εk where ε1, . . . , εn are i.i.d. N2((0, 0)T , I2) random

vectors. This means mean(X) = m + V
1/2mean(ε), where mean(ε) is the mean of all

εk vectors and has the same distributon as mean(X) in 1.)

If we plot the two loss functions versus sample size, the curves will be very noisy. It is better
to average over several realizations, using the function snorm2 (or possibly Esnorm2). When
iter, the number of iterations, is fairly large, we can plot estimates of E(ml) and E(cl)
versus sample size as follows: (If your machine is fast, try a larger value of iter.)

>> help snorm2

>> n = [50 100 200 500 1000]’

>> iter = 5;

>> [ml(1) cl(1)] = snorm2(iter,th,n(1),’Ch’);

>> [ml(2) cl(2)] = snorm2(iter,th,n(2),’Ch’);

>> [ml(3) cl(3)] = snorm2(iter,th,n(3),’Ch’);
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>> [ml(4) cl(4)] = snorm2(iter,th,n(4),’Ch’);

>> [ml(5) cl(5)] = snorm2(iter,th,n(5),’Ch’);

>> figure(1)

>> plot(n,ml’,’-’)

>> hold on

>> figure(2)

>> plot(n,cl’,’-’)

>> hold on

If you want, you can include the exact value of E(ml) (computed in 1.) in Figure 1.

Now turn to the Gibbs sampler. If only three input arguments are given, the Markov chain
starts at (0, 0)T and no iterates are discarded in the beginning (n_init = 0).

>> [ml(1) cl(1)] = snorm2(iter,th,n(1),’Gi’);

>> [ml(2) cl(2)] = snorm2(iter,th,n(2),’Gi’);

>> [ml(3) cl(3)] = snorm2(iter,th,n(3),’Gi’);

>> [ml(4) cl(4)] = snorm2(iter,th,n(4),’Gi’);

>> [ml(5) cl(5)] = snorm2(iter,th,n(5),’Gi’);

>> figure(1)

>> plot(n,ml’,’-.’)

>> hold off

>> figure(2)

>> plot(n,cl’,’-.’)

>> hold off

Is there any systematic difference between the two methods? If not, can you explain it?

As the last method, we consider the Metropolis-Hastings algorithm with a random walk
kernel

q(x, y) = q1(y − x); q1 ∼ N2

(
(0, 0)T , s2

I2

)
.

The standard deviation s determines the size of the jumps. There is also a new output
parameter acc that determines the proportion of accepted moves. Generate samples of length
n = 500 and varying s. Choose iter so that the computation time is feasible.

>> s = [0.2 0.4 0.7 1 2 4]’

>> [ml(1) cl(1) acc(1)] = snorm2(iter,th,500,’MH’,s(1));

>> [ml(2) cl(2) acc(2)] = snorm2(iter,th,500,’MH’,s(2));

>> [ml(3) cl(3) acc(3)] = snorm2(iter,th,500,’MH’,s(3));

>> [ml(4) cl(4) acc(4)] = snorm2(iter,th,500,’MH’,s(4));

>> [ml(5) cl(5) acc(5)] = snorm2(iter,th,500,’MH’,s(5));

>> [ml(6) cl(6) acc(6)] = snorm2(iter,th,500,’MH’,s(6));

>> plot(s,ml’,’-.’,s,cl’,’:’,s,acc’,’-’)

How does s affect the acceptance rate and the loss functions?
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2.2 High correlation

Now redo everything for a distribution with high correlation 0.95:

>> th = [0 0 1 1 0.95]

>> [X ml cl] = snorm(th,200,’Ch’)

>> plot(X(:,1),X(:,2),’.’)

Repeat all the other steps above for the Choleski, Gibbs and MH algorithms. Some questions:

• Are the loss functions for the Choleski method affected?

• Is the performance of the Gibbs sampler still comparable to the Choleski method?

• How does correlation affect acceptance rate and performance of the MH algorithm?

Before moving to the next section, type

>> clear

3 Simulating a Two Component Mixture (Multimoda-

lity)

We will now simulate the two component mixture

0.5N2

(
(0, 0)T , I2

)
+ 0.5N2

(
(7, 7)T , I2

)
.

This means the with equal probabilities 0.5 the first and second normal components are
chosen respectively. The two distributions are defined through

>> th1 = [0 0 1 1 0]

>> th2 = [7 7 1 1 0]

Start generating and plotting 500 observations with the Choleski method. (The mixture
probability p = 0.5 is specified as the last input argument.)

>> [X ml cl acc ph] = snorm(th1,500,’Ch’,[],[],[],th2,0.5)

>> plot(X(:,1),X(:,2),’.’)

The output ph is the relative frequency of visits to the second component. It can be inter-
preted as an estimator of the mixture probability p. Which is the distribution of ph?

Now try the Gibbs sampler (with n_init = 0 and starting point (0, 0)T ).

>> [X ml cl acc ph] = snorm(th1,500,’Gi’,[],[0 0],0,th2,0.5)

>> plot(X(:,1),X(:,2),’.’)

Is the second mixture component ever visited? Why? Can you think of any modification of
the Gibbs algorithm with better performance for this distribution?

Try again, but choose the second mean closer to the origin:
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>> th3 = [4 4 1 1 0]

>> [X ml cl acc ph] = snorm(th1,500,’Gi’,[],[0 0],0,th3,0.5)

>> plot(X(:,1),X(:,2),’.’)

Did you notice any difference?

As in the previous section, we investigate how the spread parameter s affects the MH-
algorithm. The value of iter may have to be decreased if the computation times are too
high.

>> s = [0.5 1 3 5 7 9]’

>> x0 = [0 0];

>> [ml(1) cl(1) acc(1) ph(1)]=snorm2(5,th1,500,’MH’,s(1),x0,0,th2,0.5)

>> [ml(2) cl(2) acc(2) ph(2)]=snorm2(5,th1,500,’MH’,s(2),x0,0,th2,0.5)

>> [ml(3) cl(3) acc(3) ph(3)]=snorm2(5,th1,500,’MH’,s(3),x0,0,th2,0.5)

>> [ml(4) cl(4) acc(4) ph(4)]=snorm2(5,th1,500,’MH’,s(4),x0,0,th2,0.5)

>> [ml(5) cl(5) acc(5) ph(5)]=snorm2(5,th1,500,’MH’,s(5),x0,0,th2,0.5)

>> [ml(6) cl(6) acc(6) ph(6)]=snorm2(5,th1,500,’MH’,s(6),x0,0,th2,0.5)

>> figure(1)

>> plot(s,ml’,’-.’,s,cl’,’:’)

>> figure(2)

>> plot(s,acc’,’-’,s,ph’,’--’)

Looking at the plots, notice in particular how ph depends on s.

4 Simulating the Ising Model

The Ising model gives a simple description of a magnet. Suppose we have an m × n lattice

S = {(i, j); 1 ≤ i ≤ m, 1 ≤ j ≤ n}

and a vector
XXX = (X(i,j); (i, j) ∈ S).

Each component X(i,j) ∈ {−1, 1} represents the magnetic spin of an atom. We assume that
XXX is an observation of a Gibbs distribution π on {−1, 1}S:

π(XXX) = exp(−β̃E(XXX))/Z,
E(XXX) = −

∑
(i,j)∈S

∑
(i′,j′)∈N(i,j) x(i′,j′)x(i,j).

Here E is the energy function, β̃ a parameter describing the strength and type of magnetic
interaction and Z a normalization constant that makes π a probability distribution function.
N(i, j) is the array of neighbours to (i, j). For instance, a neighbour structure

N =
0 1 0
1 0 1
0 1 0

gives four neighbours of (i, j) (the neighbours are marked with 1 and (i, j) is the central 0).
Since π has 2mn possible outcomes, it is extremely time consuming to simulate π directly.
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Fortunately, the conditional distibution of the components are easy to update, which makes
the Gibbs sampling procedure appropriate. Verify that

π
(
X(i,j) = 1|XXX−(i,j)

)
=

exp
(
2β̃(NN1(i, j) − NN−1(i, j))

)

exp
(
2β̃(NN1(i, j) − NN−1(i, j))

)
+ 1

, (1)

with NNν(i, j) the number of neighbours of (i, j) with value ν. The vector XXX−(i,j) contains
all components in XXX except X(i,j).

We will now use

function M = film(iter,beta,N,omega0)

to generate Gibbs samples from π. The program codes -1 to 0, so all arrays are binary from
now on. Define the (random) starting configuration and neighbour structure:

>> omega0 = rand(20,20)<0.5,

>> N = [0 1 0; 1 0 1; 0 1 0]

The program uses

β̃ =
β

2NN(i, j)
(2)

when updating the components. Here NN(i, j) = NN−1(i, j) + NN1(i, j) is the number of
neighbours to (i, j) and β is held fixed. The formula compensates for NN being smaller at
egdes and corners, and makes the interaction stronger at such locations. It corresponds to
“there is nothing outside the lattice”, whereas a constant β̃ would force us to put a boundary
condition outside S.

Define β and number of iterations:

>> beta = 1

>> iter = 30

One iteration means that all mn components are updated rowwise with the correct condi-
tional probabilities. Run a sequence of iter simulations: The function film generates the
movie, puts the result into M and then movie runs several replays back and forth. A third
optional parameter of movie controls the speed of the replay. Warning: Choose a rather small
graphical window, otherwise you may run out of memory! All displays may be interrupted
with ctrl C.

>> M = film(iter,beta,N,omega0);

>> help movie

>> movie(M,-100)

Now redo everything for other beta and neighbour structures, e.g.

>> N = [ 0 1 1; 0 0 0; 1 1 0].

For stability reasons, it is important that N is symmetric w.r.t. the origin. Larger beta may
require more iterations before convergence. Some questions:
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• How does beta influence the configurations?

• How does N influence the configurations?

• Can you find any analogy between a large beta (e.g. 10) and the bimodal example of
Section 2.

5 Bayesian statistics

5.1 Binomial distribution

Let X be Bin(n, θ) where θ has a discrete apriori distribution pΘ(θ), 0 < θ < 1 defined on a
dense set of values. Therefore the likelihood function

L(θ, x) =

(
n

x

)
θx(1 − θ)n−x = pX|Θ=θ(x)

Let e.g. n = 10, x = 2 and n = 100, x = 20 and calculate with Matlab the aposteriori
distribution numerically for Θ|X = x. Use both a uniform apriori distribution and some
non-uniform distribution. Let e.g. the lattice be defined by p = 0.001 : 0.001 : 0.999 i.e. the
numbers 0.001 until 0.999 in steps of 0.001.

5.2 Exponential distribution

Generate 10 observations x1, x2, · · · , x10 which are exponentially distributed with mean va-
lue 5. Select some different apriori distributions (discrete ones mimicing continuous distribu-
tions) for the expected value θ in the exponential distribution and calculate the aposteriori
distribution of θ given the observations. Take e.g. a uniform distribution U(0, 30) and some
other distribution as apriori distribution.

6 Problems on Simulated annealing

Use simulated annealing to solve the ”over determined” binary system of equation Ax = b
where b is a binary n × 1-vector (consisting of 0:s and 1:s) and A is a binary n × m-matrix.
The solution x is also a binary m × 1-vector.

The matrix multiplication Ax is performed modulo 2, i.e. the result is itself a binary vector.

To find a ”solution” x̂ we should choose a binary x such that Ax coincides with b in as many
components as possible, i.e. x̂ minimizes

|Ax − b|, where | · | is the summation of the absolute values.

Simulated annealing for this problem can be performed by using the function anneal which
can be downloaded from the home page.

We have to generate a b-vector and an A-matrix and that can e.g. be done using the code

b = rand(n, 1) < 0.5; A = rand(n, m) < delta;

8



where n > m, i.e. the system is over determined.

Suitable values can be n = 100 and m = 50 together with delta = 0.1. The latter parameter
delta is the proportion of 1:s in the A-matrix and a large value makes the minimizing problem
too difficult since |Ax − b| then is quite discontinuous.

I have produced some A-matrices and b-vectors which can be found in an4.mat and an4ny.mat
in the directory

http : //www.math.kth.se/matstat/gru/5b1555/mfiler/

where they can be downloaded. The can then be loaded into Matlab using the code load filnamn.

The command load an4 gives you a b-vector and an A-matrix with = 100 and m = 50 and
delta = 0.1 where I have found the minimal value 16. I do not know if this is the true
minimum but the problem is too big (there are 250 ≈ 1.13 · 1015 possible x-vectors) to solve
the problem exactly (as far as I know).

By loading an4ny we get a b-vector of size 50× 1 and an A-matrix of size 50× 25 and hence
there are 225 ≈ 33.000.000 possible x-vectors. (I have investigated this problem and there
is a unique solution given the value 6, i.e. with this special vector x̂ all equations except 6
match.

Use either the ”prepared” problems or generate youselt an A-matrix and a b-vector and run
simulated annealing using anneal - view the instructions using help anneal!

7 Using the package BUGS

For UNIX:

Arrange first so you can run BUGS by

1) either let the directory /info/fysikkurser/matstat/bugs/ be part of your path

2) or copy the executable files in that directory to a directory in your path (a suitable place
is /bin where program files are usually stored). The files are

bugs, bugs05.sparc, and bugs06.sparc

In addition there is a file backbugs which makes it possible to run BUGS in the background.

Download the program file pump.bug, the indata file pump.dat and the initialization file
pump.in from the BUGS-filedirectory on the course home page.
http : //www.math.kth.se/matstat/gru/5b1555/BUGS/.
The files are also stored in the directory

/info/fysikkurser/matstat/bugs/

so they can be copied from there. (There are also files dyes.bug and dyes2.bug which are
examples of onesided and twosided analysis of variance.)
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View the files and try to understand the syntax. Remember that BUGS updates the different
parameters using Gibbs sampling, i.e. it updates them successively with the conditional
distribution for the current parameter given all the rest. BUGS in principle demands that
these are conjugated, log-concave or discrete - otherwise BUGS will complain.

pump.bug describes the example on 10 pumps run for differents times and the number of
failures has been noted. The model is that the number of failures of pump nr i (which has
been run the time ti) is Po(λti). As apriori distribution for λ we have Γ(α, β) where α is
Exp(1) and β is Γ(0.1, 1).

A manual for BUGS can be found on
http : //www.mrc− bsu.cam.ac.uk/bugs/
where you click on Documentation and then on Bugs manual v0.5

A set of examples can also be found. By downloading the file exdir05.tar from

http : //www.math.kth.se/matstat/5b1555/BUGS/

and unpacking using the command

tar xvpf exdir05.tar

a whole directory structure (in the current directory) containing examples. This can also be
found in /info/fysikkurser/matstat/bugs/.

For DOS you download exdir05.exe and unpack it with the command exdir05 -o -d. These
examples can worthwhile to study.

Start BUGS with the command bugs. You exit with the command q().

Compile the program pump.bug with the command
compile(“pump.bug′′).
Let then the chain be updated in (e.g)100 steps with the command update(100) so that the
dependence on the initialization values is decreased.

Using the commands monitor(alpha) and monitor(beta) you indicate that you want output
for the variables alpha och beta

The command update(1000) indicates that you want 1000 observations from the aposterio
distribution for (α, β). When you exit BUGS with q() the file bugs.out is created which
contains these observations. In addition you get a column with numbering of the observations.
First you get the α-observations and then the β-observations.

Load these into Matlab with load bugs.out. Remember how the file bugs.out is organized.
Information on this can be found in the file bugs.ind which BUGS generates.

Plot the distributions of α and β. A good way of illustrating is to generate the predicti-
ve distribution for λ (i.e. for a new pump) by generating a Γ(α, β)-observation for each
(α, β)-observation by using the Matlab-procedure gamrnd. Note that in Matlab the second
parameter in the Γ-distribution is the scale parameter (i.e.1/β).
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