Cauchy sequences and complete spaces

Recall that

$$\lim_{n\to\infty} f_n = f$$

means that for every $\varepsilon>0$ there exists an N such that

$$||f_n - f|| < \varepsilon$$
 for all $n \ge N$.

Problem: To check for convergence you need to know what the limit is!

The remedy for complete spaces is

Def 1 A sequence $\{f_n\}_{n=1}^{\infty}$ is a **Cauchy sequence** if for every $\varepsilon > 0$ there exists an N such that

$$||f_n - f_m|| < \varepsilon$$
 for all $m, n \ge N$.

Def 2 A normed linear space is called **com**-**plete** if every Cauchy sequence in the space
converges, i.e. for each Cauchy sequence $\{f_n\}_{n=1}^{\infty}$ in the space there is an element f in the space
such that

$$f_n \to f$$
.

Advantage: Now you can check for convergence without knowing the limit!

Examples of complete spaces:

- \mathbb{R} with ||f|| = |f|.
- $L^1(\Omega, \mathcal{F}, P)$ with

$$||X|| = \int_{\Omega} |X| dP.$$

• $L^2(\Omega, \mathcal{F}, P)$ with

$$||X|| = \sqrt{\int_{\Omega} |X|^2 dP}.$$