WHAT YOU SHOULD KNOW BY HEART ABOUT COMBINATORIAL GAME THEORY

- Definitions:
 - $G = \{ G^L | G^R \},$
 - relations: \geq , >, =, \parallel , \triangleright ,
 - -G, G + H, but the definition of multiplication of numbers is not necessary to remember,
 - short game, (surreal) number, impartial game,
 - the left and right values and sections (no standard notation),
 - the cooled game G_t ,
 - the temperature t(G) and the mean value G_{∞} .
- Special notation:
 - the game $* = \{0|0\},\$
 - the numbers *n for positive integers n,
 - the mex of a set of nonnegative integers,
 - the nim addition operator \oplus .
- General lingo:
 - dyadic rationals,
 - normal play convention, misère play convention.
- Theorems (but you don't have to remember their proofs in detail):
 - Conway induction
 - Fundamental properties of the relations \geq , >, =, \parallel , \triangleright and the minus and plus operators.
 - Numbers are totally ordered (ONAG, Th. 2).
 - The number tree (ONAG, page 11) for short games (finite birthdays).
 - The (general) simplicity theorem (ONAG, Th. 11).
 - The translation theorem (ONAG, Th. 90)
 - Increasing an option weakly increases the game (ONAG, Th. 67(i)).
 - Games can be simplified if they have dominated or reversible options (ONAG, Th. 68).
 - Any short game has a unique canonical form (ONAG, Th. 69).
 - Linearity of cooling (ONAG, Th. 64)
 - Properties of temperature and mean value (ONAG, Th. 66 and Th. 59).
 - Computing the left and right values (ONAG, Th. 56).
 - Grundy's theorem: Every short impartial game is equivalent to a nimber (ONAG, Th. 71; Lecture notes 3, Th. 6.3).
 - Addition of nimbers: $*m + *n = *(m \oplus n)$ (Lecture notes 3, Th. 6.2).
- Abilities
 - Compute the value of any nim position and any Blue-Red Hackenbush tree position.
 - Draw the thermograph of any short game.
 - Write any short game in canonical form.
 - Perform a minimax search with alpha-beta pruning in a game tree.