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Today we will consider finite normal-form games G = (N, S, u), that is,
games with finitely many players and with finitely many strategies for each

player:

1. N ={1,...n} is the finite set of players

2. S = X;eNS; is the finite set of pure strategy profiles

3. u:S — R" is the combined payoff function

u; (s) € R being the payoff/utility to player ¢ when strategy profile
s = (s1,...,8n) is played



1 Mixed strategies

1.1 Geometry

o Let S; ={1,...,m;} be i's pure strategies

e The player's mixed-strategy simplex:

m;
X; =0, =A(S;) = {z; GRTi : Z x;;, = 1}
h=1

e The vertices of A; are the unit vectors, e}, ...,e; " € R



e Example: |S;| =3

Xi2




e The mixed-strategy polyhedron:

X =0=0(5) = xienA(S;)

e Example: n = |S1| = |5y =2
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1.2 Mixed-strategy payoff functions

The payoff to a player, when mixed strategies are used ,is defined as the
(mathematical) expectation of the player’s payoff:

Definition 1.1 The payoff function for each player i € N, @; : [J(S) — R,
is defined by

i(z) = ) (ﬁ mzsz> u; ()

s€S \iu1=1

e Note that this is a polynomial function that is linear in each player’s
randomization. In particular, it is linear in the player's own mixed
strategy

ai(zh,x ;) = N (el x_y) -2k, Vil e A(Sy)
hes;



1.3 Interpretations

[Osborne and Rubinstein 3.2]

1. Intentional randomization (the rationalistic interpretation)

2. Population frequencies (the mass-action interpretation)

3. Mixed strategies as (others’) beliefs, not (your) actions



2 Best replies and dominance relations

Definition 2.1 The mixed-strategy extension of a finite game G = (N, S, u)
is the game G = (N,(S), i) .

2.1 Best replies

e The 2:th player's pure-strategy best-reply correspondence on the poly-
hedron of mixed-strategy profiles, 5, : [1(S) = 5;, is defined by

Bi(x) = {h € S; : @;(el, x_;) > @;(e¥, x_;) Vk € S;}

e Mixed strategies cannot give higher payoffs than pure (why?):

Bi(x) = {h € S; : @;(el, x_;) > @iy(a}, x_;) Val € Ay}



Definition 2.2 The i:th player’s mixed-strategy best-reply correspondence
B;: 1(S) = A, is defined by

Bi(x) = {zf € A : d;(xf, 2_;) > dy(x), ;) Vo € A}

e Note that
Bi(z) = {zf € A, : supp(x}) C Bi(x)}

o 3;(x) is a face (or subsimplex) of the simplex A;

e The combined mixed BR correspondence 3 : 0 (S) = [0(S) is defined
by

B(z) :== XienBi(z)

Definition 2.3 A mixed-strategy profile = is a Nash equilibrium of G =
(V,U(S),4) ifz € B(x)



2.2 Dominance relations

Definition 2.4 z* € A; strictly dominates 2, € A; if

ﬂz(a?;k, x_;) > ﬂz(ajé, x_;) Ve € U

Definition 2.5 =} € A; weakly dominates 2, € A; if

;(zf, x—;) > Uiz}, x—;) Vo € O with > for some x € [

Definition 2.6 A strategy that is not weakly dominated is undominated.



1. For a player to use a strictly dominated strategy is irrational: is not
optimal under any belief

2. To use a weakly dominated strategy is like not taking an insurance that
is available for free, an insurance against all eventualities associates
with all other players’ actions. In simultaneous-move games, it seems

unwise not to take such an insurance.

3. A strategy can be strictly dominated without being (weakly or strictly)
dominated by any pure strategy



Example 2.1 Consider player 1 with payoff matrix
30
A=|0 3
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e In arbitrary finite games: iterated elimination of strictly dominated
pure strategies

(a) Halts after a finite number of rounds
(b) End-result independent of order of elimination

(c) Nash equilibria never eliminated

Example 2.2 A two-player game with payoff bi-matrix

3,3 0,0 6,1
(A,B)=|0,0 0,0
1,6 2,5

Y

Y

5,2
4,4 |




2.3 Dominance vs. best replies

e Pure best replies are clearly not strictly dominated

Q1: If a pure strategy is not strictly dominated, is it then a best reply to
some (mixed-)strategy profile?



Proposition 2.1 (Pearce, 1984) Suppose n = 2. Then
(a) h € B;(x) forsome x € 1 <& h € S, not strictly dominated

(b) h € 3;(x) for some x € int(Ll) < h € S; undominated

e What about games with more than two players?



3 Rationalizability

[Osborne and Rubinstein 4.1-4.2]
e Consider a finite game in normal form, G = (N, S, u) and assume

A1l (Rationality): Each player ¢ forms a probabilistic belief ,ué- C

A (Sj> about every other player j's pure strategy, a belief that
does not contradict any information or knowledge that player ¢ has,
and player ¢ chooses a (pure or mixed) strategy that maximize his
or her expected payoff, assuming statistical independence between
other player's strategy choices [Osborne and Rubinstein 5.1.2]

A2 (Common knowledge): The game G and the players’ rational-
ity (Al) is common knowledge among the players [Osborne and
Rubinstein 5.2]



e In Lecture 1, we observed that [A1 A A2] = NE

Q1: What does Al and A2 then imply (if anything)?
Al: Rationalizability!
Q2: What is, then, “rationalizability” ?

A2: The definition is recursive and a bit involved. We make it in steps.



e For any X = X?:1Xj’ where each Xj C A (Sj), write

B (X) = {mf c A(S;): zF € p; (x) for somea:EX}

e Note that the set 3, (X) is not necessarily convex even if X is convex



Example 3.1

Consider player 1 with payoff matrix
30
A=10 3
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o Let CO =[J(S) and define the sequence <Ct>teN recursively by

C’;-H_l = conv [BZ (C’t>] Vi€ N
Ctl = XieNCerl

e Here “conv’ means “convex hull of”

Definition 3.1 The convex hull of a set X C IR"™ is the intersection of all
convex sets that contain X.



Definition 3.2 (Pearce, 1984) A strategy x; € A (.S;) is rationalizable for

player ¢ if x; € C?°, where

CP° = NyenCy-
Proposition 3.1 C>° = A(Z;) for a non-empty subset Z; C S;
Proof: For any given player ¢« € INV:
1. Vt: C! is a subsimplex of A (.S;)
2. vt: Ot C ¢t

3. The collection of subsimplices of A (.S;) is finite



Definition 3.3 A pure strategy h € S; is rationalizable if h € Z,.

e Reconsider earlier examples

e Note that (the support of) any NE is rationalizable



3.1 Rationalizability vs. iterated strict dominance

Discussion in class

e First consider two-player games

e Then consider games with more players

e Osborne’s and Rubinstein’s definition



4 Evolutionary stability

A population scenario

1. A large population of individuals who are recurrently and randomly
matched in pairs to play a symmetric and finite two-player game

2. Initially, all individuals always use the same pure or mixed strategy, =
3. Suddenly, a small population share switch to strategy y

4. If those who play = on average do better than those who play y, then
x is stable against y

5. x is evolutionarily stable if it is stable against all y # x



e The domain of the analysis now restricted to symmetric and finite

two-player games

Definition 4.1 A finite two-player game G is symmetric if S1 = Sy and
us(h, k) = uy(k, h) for all pure strategies h and k.

e Payoff bimatrix (A, B) such that B = AT

e Write S for S1 = S5 and A for A (\S), the mixed-strategy simplex:

A={zeRT:> z;=1}
€S

e Write the payoff to any strategy x € A, when used against any strategy
y € A as



Example 4.1 (Prisoners’ dilemma) symmetric

C D
C 3,3 0,4
D 4,0 2,2

Example 4.2 (Matching-pennies) asymmetric

H T
H 1,-1 —-1,1
T -1,1 1,-1

Example 4.3 (Coordination) doubly symmetric

I~
=y

~

QOI\.)
oM
= O
= O

L
R



Definition 4.2 = € A is an evolutionarily stable strategy (ESS) if for every
strategy y # x 3 € € (0,1) such that for all € € (0,2):

ulz,ey+ (1 —e)x] > uly, ey + (1 — e)x].

o Let AESS C A denote the (sometimes empty) set of ESSs



AESS

Proposition 4.1 x € if and only if

u(x, ) > u(y, x) Vy € A

and

u(y, x) = u(x, ) = u(y,y) < u(z,y)

o Hence: z € AFSS = (z,z) Nash equilibrium



Example 4.4 (PD)

AESS _ {D}



Example 4.5 (CO)

{4, B}

AESS



Example 4.6 (Hawk-Dove)

H D
H —1,-1 4.0
D 0,4 272

AESS _



THE END



