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Today we will consider finite normal-form games  = h i, that is,
games with finitely many players and with finitely many strategies for each

player:

1.  = {1 } is the finite set of players

2.  = ×∈ is the finite set of pure strategy profiles

3.  :  → R is the combined payoff function

 () ∈ R being the payoff/utility to player  when strategy profile

 = (1  ) is played



1 Mixed strategies

1.1 Geometry

• Let  = {1 } be ’s pure strategies

• The player’s mixed-strategy simplex:

 = ∆ = ∆ () = { ∈ R
+ :

X
=1

 = 1}

• The vertices of ∆ are the unit vectors, 
1
   


 ∈ R

+



• Example: || = 3
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• The mixed-strategy polyhedron:

 = ¤ = ¤ () = ×∈∆ ()

• Example:  = |1| = |2| = 2
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1.2 Mixed-strategy payoff functions

The payoff to a player, when mixed strategies are used ,is defined as the

(mathematical) expectation of the player’s payoff:

Definition 1.1 The payoff function for each player  ∈  , ̃ : ¤ ()→ R,
is defined by

̃() =
X
∈

⎛⎝ Y
=1



⎞⎠ ()

• Note that this is a polynomial function that is linear in each player’s
randomization. In particular, it is linear in the player’s own mixed

strategy

̃(
0
 −) =

X
∈

̃(

  −) · 0 ∀0 ∈ ∆ ()



1.3 Interpretations

[Osborne and Rubinstein 3.2]

1. Intentional randomization (the rationalistic interpretation)

2. Population frequencies (the mass-action interpretation)

3. Mixed strategies as (others’) beliefs, not (your) actions



2 Best replies and dominance relations

Definition 2.1 The mixed-strategy extension of a finite game = h i
is the game ̃ = h¤ ()  ̃i 

2.1 Best replies

• The :th player’s pure-strategy best-reply correspondence on the poly-
hedron of mixed-strategy profiles,  : ¤ ()⇒ , is defined by

() = { ∈  : ̃(

  −) ≥ ̃(


  −) ∀ ∈ }

• Mixed strategies cannot give higher payoffs than pure (why?):

() = { ∈  : ̃(

  −) ≥ ̃(

0
 −) ∀0 ∈ ∆}



Definition 2.2 The :th player’s mixed-strategy best-reply correspondence
̃: ¤ ()⇒ ∆ is defined by

̃() = {∗ ∈ ∆ : ̃(
∗
  −) ≥ ̃(

0
 −) ∀0 ∈ ∆}

• Note that
̃() = {∗ ∈ ∆ : supp(

∗
 ) ⊂ ()}

• ̃() is a face (or subsimplex) of the simplex ∆

• The combined mixed BR correspondence ̃ : ¤ ()⇒ ¤ () is defined
by

̃() := ×∈̃()

Definition 2.3 A mixed-strategy profile  is a Nash equilibrium of ̃ =

h¤ ()  ̃i if  ∈ ̃ ()



2.2 Dominance relations

Definition 2.4 ∗ ∈ ∆ strictly dominates 
0
 ∈ ∆ if

̃(
∗
  −)  ̃(

0
 −) ∀ ∈ ¤

Definition 2.5 ∗ ∈ ∆ weakly dominates 
0
 ∈ ∆ if

̃(
∗
  −) ≥ ̃(

0
 −) ∀ ∈ ¤ with  for some  ∈ ¤

Definition 2.6 A strategy that is not weakly dominated is undominated.



1. For a player to use a strictly dominated strategy is irrational: is not

optimal under any belief

2. To use a weakly dominated strategy is like not taking an insurance that

is available for free, an insurance against all eventualities associates

with all other players’ actions. In simultaneous-move games, it seems

unwise not to take such an insurance.

3. A strategy can be strictly dominated without being (weakly or strictly)

dominated by any pure strategy



Example 2.1 Consider player 1 with payoff matrix

 =

⎡⎢⎣ 3 0
0 3
1 1

⎤⎥⎦

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

Pr(L)

payoff



• In arbitrary finite games: iterated elimination of strictly dominated
pure strategies

(a) Halts after a finite number of rounds

(b) End-result independent of order of elimination

(c) Nash equilibria never eliminated

Example 2.2 A two-player game with payoff bi-matrix

() =

⎡⎢⎣ 3 3 0 0 6 1
0 0 0 0 5 2
1 6 2 5 4 4

⎤⎥⎦



2.3 Dominance vs. best replies

• Pure best replies are clearly not strictly dominated

Q1: If a pure strategy is not strictly dominated, is it then a best reply to

some (mixed-)strategy profile?



Proposition 2.1 (Pearce, 1984) Suppose  = 2. Then

(a)  ∈ () for some  ∈ ¤ ⇔  ∈  not strictly dominated

(b)  ∈ () for some  ∈ (¤) ⇔  ∈  undominated

• What about games with more than two players?



3 Rationalizability

[Osborne and Rubinstein 4.1-4.2]

• Consider a finite game in normal form,  = h i and assume

A1 (Rationality): Each player  forms a probabilistic belief  ∈
∆
³

´
about every other player ’s pure strategy, a belief that

does not contradict any information or knowledge that player  has,

and player  chooses a (pure or mixed) strategy that maximize his

or her expected payoff, assuming statistical independence between

other player’s strategy choices [Osborne and Rubinstein 5.1.2]

A2 (Common knowledge): The game  and the players’ rational-

ity (A1) is common knowledge among the players [Osborne and

Rubinstein 5.2]



• In Lecture 1, we observed that [A1 ∧ A2] ; NE

Q1: What does A1 and A2 then imply (if anything)?

A1: Rationalizability!

Q2: What is, then, “rationalizability”?

A2: The definition is recursive and a bit involved. We make it in steps.



• For any  = ×
=1, where each  ⊂ ∆

³

´
, write

̃ () =
n
∗ ∈ ∆ () : 

∗
 ∈ ̃ () for some  ∈ 

o

• Note that the set ̃ () is not necessarily convex even if  is convex



Example 3.1 Consider player 1 with payoff matrix

 =

⎡⎢⎣ 3 0
0 3
2 2
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• Let 0 = ¤ () and define the sequence
D

E
∈N recursively by⎧⎨⎩ +1

 = 
h
̃
³

´i
∀ ∈ 

+1 = ×∈
+1


• Here “conv” means “convex hull of”

Definition 3.1 The convex hull of a set  ⊂ R is the intersection of all
convex sets that contain .



Definition 3.2 (Pearce, 1984) A strategy  ∈ ∆ () is rationalizable for

player  if  ∈ ∞ , where

∞ = ∩∈N
 

Proposition 3.1 ∞ = ∆ () for a non-empty subset  ⊂ 

Proof: For any given player  ∈  :

1. ∀: 
 is a subsimplex of ∆ ()

2. ∀: +1
 ⊆ 



3. The collection of subsimplices of ∆ () is finite



Definition 3.3 A pure strategy  ∈  is rationalizable if  ∈ .

• Reconsider earlier examples

• Note that (the support of) any NE is rationalizable



3.1 Rationalizability vs. iterated strict dominance

Discussion in class

• First consider two-player games

• Then consider games with more players

• Osborne’s and Rubinstein’s definition



4 Evolutionary stability

A population scenario

1. A large population of individuals who are recurrently and randomly
matched in pairs to play a symmetric and finite two-player game

2. Initially, all individuals always use the same pure or mixed strategy, 

3. Suddenly, a small population share switch to strategy 

4. If those who play  on average do better than those who play , then
 is stable against 

5.  is evolutionarily stable if it is stable against all  6= 



• The domain of the analysis now restricted to symmetric and finite

two-player games

Definition 4.1 A finite two-player game  is symmetric if 1 = 2 and

2( ) = 1( ) for all pure strategies  and .

• Payoff bimatrix () such that  = 

• Write  for 1 = 2 and ∆ for ∆ (), the mixed-strategy simplex:

∆ = { ∈ R+ :
X
∈

 = 1}

• Write the payoff to any strategy  ∈ ∆, when used against any strategy

 ∈ ∆ as

( ) =  ·



Example 4.1 (Prisoners’ dilemma) symmetric

 
 3 3 0 4
 4 0 2 2

Example 4.2 (Matching-pennies) asymmetric

 
 1−1 −1 1
 −1 1 1−1

Example 4.3 (Coordination) doubly symmetric

 
 2 2 0 0
 0 0 1 1



Definition 4.2  ∈ ∆ is an evolutionarily stable strategy (ESS) if for every

strategy  6=  ∃ ̄ ∈ (0 1) such that for all  ∈ (0 ̄):

 [  + (1− )]   [  + (1− )] 

• Let ∆ ⊂ ∆ denote the (sometimes empty) set of ESSs



Proposition 4.1  ∈ ∆ if and only if

( ) ≥ ( ) ∀ ∈ ∆

and

( ) = ( )⇒ ( )  ( )

• Hence:  ∈ ∆ ⇒ ( ) Nash equilibrium



Example 4.4 (PD)

 
 3 3 0 4
 4 0 2 2

∆ = {}



Example 4.5 (CO)

 
 2 2 0 0
 0 0 1 1

∆ = {}



Example 4.6 (Hawk-Dove)

 
 −1−1 4 0
 0 4 2 2

∆ =?



THE END


