
Intro

• Mark Voorneveld, mark.voorneveld@hhs.se

• Main topic: extensive form games (= extensive games = games in

extensive form).

• Parts from chapters 6, 11, and 12 in Osborne and Rubinstein (OsRu).

• I refer explicitly to the definitions/results in OsRu in these slides.

• Before going into more advanced stuff, we’ll be formalizing some of
the things you have seen in Jörgen’s part of the course.

• Disadvantage: elaborate notation.



Def. 89.1 An extensive form game with perfect information

Γ = hN,H,P, (%i)i∈Ni

consists of

£ nonempty, finite set N of players,

£ set H of histories, summarizing the sequence of actions taken so far:

• initial history: ∅ ∈ H,

• H contains the initial segments of all histories: if (ak)k=1,...,K ∈ H

(possibly K =∞) and L < K (fewer actions), then (ak)k=1,...,L ∈ H,

• if an infinite seq (ak)k∈N satisfies that all its initial sequences (ak)k=1,...,K
with K ∈ N are in H, then so is the infinite sequence itself.



A history is terminal if it is infinite or there is no “longer” history:

(ak)k=1,...,K is terminal if there is no aK+1 such that (ak)k=1,...,K+1 ∈ H.

The set of terminal histories is denoted by Z ⊆ H.

£ player function P : H \ Z → N assigning to each nonterminal history a

player whose turn it is to take an action,

£ for each player i ∈ N a preference relation %i over terminal histories.

Often assumed to satisfy the vNM axioms, in which case we represent them

by a Bernouilli function ui on Z.



Example 1.

a a bb

(3,1) (0,0) (1,3)(0,0)

A B

1

2 2

N = {1, 2}

H = { ∅|{z}
length 0

, A,B| {z }
length 1

, (A, a), (A, b), (B, a), (B, b)| {z }
length 2

}

Z = {(A, a), (A, b), (B, a), (B, b)}

P (∅) = 1, P (A) = P (B) = 2

In terminal history (A, a), player 1 gets “payoff” 3 and player 2 gets payoff
1, etc.



Other terminology/notational conventions:

£ If the set of histories H is a finite set, the game is called finite.

£ If every history h ∈ H is a finite sequence, the game has a finite horizon.

£ The game’s horizon is the length of its longest history.The example above
has horizon/length 2.

£ So: finite game ⇒ finite horizon (what about the converse?!)

£ Let h = (a1, . . . , aK) ∈ H and let aK+1 be such that (a1, . . . , aK, aK+1) ∈
H. The latter history is sometimes abbreviated as (h, aK+1).



£ For nonterminal history h ∈ H \ Z, we define

A(h) = {a : (h, a) ∈ H}

as the set of actions that player P (h) can choose in history h.

£ Def. 92.1: a pure strategy si of player i ∈ N assigns to each history

{h ∈ H \ Z : P (h) = i} where it is i’s turn to choose, a feasible action
si(h) ∈ A(h). The set of pure strategies is denoted by Si.

In Example 1, pl 1 chooses after ∅ between A or B: two pure strategies,

for convenience denoted as A and B.

Pl 2 chooses after histories A and B, namely between a and b: four pure

strategies, denoted aa, ab, ba, bb, where, for instance ab is shorthand for

s2(A) = a, s2(B) = b.



£ Each pure strategy profile s = (si)i∈N ∈ S = ×i∈NSi determines a
unique outcome/terminal history O(s).

£ Def. 93.1: a (pure) Nash equilibrium of an extensive form game with
perfect information is a pure-strategy profile s∗ such that no player can
profitably deviate to another strategy:

for all i ∈ N and all pure strategies si of pl i : O(s∗) %i O(s
∗
−i, si).

£ This is just a pure Nash equilibrium of the associated strategic form
game (def. 94.1) where the pure strategies are those of the extensive
form game and the preferences/Bernouilli functions are defined over the
outcomes induced by the strategies.

The pure Nash equilibria of the game in Example 1 are just the pure Nash
equilibria of the strategic game

aa ab ba bb
A 3, 1 3, 1 0, 0 0, 0
B 0, 0 1, 3 0, 0 1, 3



Reduced games and equivalent strategies:

Example 2.

a b c

d

L1

C1

L3L2

C2 C3
1

2 1

L2 C2
L1L3 a a
L1C3 a a
C1L3 b c
C1C3 b d



£ Strategies L1L3 and L1C3 are outcome-equivalent: the choice between
L3 or C3 in history (C1, C2) is irrelevant, since this history is not reached
anyway.

£ Strategies si and ti of pl. i ∈ N are outcome-equivalent if – given the
strategies of the remaining players – they give rise to the same outcome:

for all s−i : O(si, s−i) = O(ti, s−i).

£ So C1L3 and C1C3 are not outcome-equivalent: the outcomes are dif-
ferent if 2 chooses C2. But if outcomes c and d were to give the same
payoff, the difference in the outcomes is irrelevant. We call the strategies
payoff-equivalent.

£ Strategies si and ti of pl. i ∈ N are payoff-equivalent if – given the
strategies of the remaining players – each player is indifferent between the
outcomes generated by si and ti:

for all s−i, for all j ∈ N : O(si, s−i) ∼j O(ti, s−i)
(or uj(O(si, s−i)) = uj(O(ti, s−i))).



£ Def. 95.1: the reduced strategic form of Γ is obtained from its strategic

form by replacing each set of equivalent strategies by a single “representa-

tive” one.

If c and d give different payoffs, the reduced strategic form is

L2 C2
L1 a a

C1L3 b c
C1C3 b d

If c and d give identical payoffs, the reduced strategic form is

L2 C2
L1 a a
C1 b c

(Notice: “the” strategic form is somewhat ambiguous: e.g. the names of

the strategies are arbitrary...)



Subgame perfection

Example 3.

1

2

A

RL

B

0,0 2,1

1,2

Strategic form:

L R
A 0, 0 2, 1
B 1, 2 1, 2

Nash equilibria: (B,L) and (A,R). But if pl 2 is called upon to play, would

2 choose R?



Subgame perfection requires that players play equilibria in each subgame.

In games with perfect information, a subgame is simply a game that starts

from an arbitrary history:

Def. 97.1: A subgame of Γ = hN,H,P, (%i)i∈Ni after history h ∈ H is

the game Γ(h) = hN,H|h, P|h, (%i|h)i∈Ni with

£ H|h = {h0 | (h, h0) ∈ H} (histories following h)

£ for all h0 ∈ H|h: P|h(h
0) = P (h, h0) (player assignments the same)

£ for all terminal histories h0, h00 ∈ H|h: h0 %i|h h00 ⇔ (h, h0) %i (h, h
00)

(preferences the same)



Def. 97.2: A strategy combination s∗ = (s∗i )i∈N is a subgame perfect

equilibrium of Γ = hN,H,P, (%i)i∈Ni if it induces a Nash equilibrium in

each subgame: for each h ∈ H \ Z, s∗|h (the strategy profile s
∗ restricted

to the subgame Γ(h)) is a Nash equilibrium of Γ(h).

Lemma 98.2 (One-deviation property) Let Γ = hN,H,P, (%i)i∈Ni have
finite horizon. The following two claims are equivalent:

(1) s∗ is a subgame perfect equilibrium.

(2) in each subgame, the first player to move cannot profitably deviate by

changing only the initial action.

Proof sketch: Clearly (1)⇒(2). Conversely, assume (2) holds. If s∗ is not
subgame perfect, choose a subgame and a profitable deviation by some pl.

i with as few deviations as possible. Consider the longest history h after



which i deviates. Then Γ(h) is a subgame with a profitable deviation in

the initial node.

Prop. 99.2 (backwards induction) Every finite extensive form game with

perfect information has a subgame perfect equilibrium (in pure strategies).

Proof sketch: Induction on length of subgames. In each subgame, given

equilibrium behavior after the initial move, the one-deviation property as-

sures that we only need to check that the first player chooses optimally.

Q: why finite games? Isn’t a finite horizon enough?

That’s a pretty nice result: equilibrium existence in pure strategies! No

need for different types of randomization (mixed/behavioral).



Example 91.1 Dividing 2 indivisible objects. Pl. 1 proposes, pl. 2 accepts

or rejects.

2,0 0,0

y n

2

1,1 0,0

y n

2

0,2 0,0

y n

2

1

(2,0)

(1,1)

(0,2)

Subgame perfect equilibria?



Section 6.3: two extensions

Extension 1: observable chance moves

Example 4: toss a coin to decide which of two extensive form games with
perfect information will be played.

One-deviation property and backward-induction result still hold.

Extension 2: simultaneous moves

Example 5: Player 1 chooses to stay home and end the game with payoffs
(2, 2) or to play a battle of the sexes game:

Bach Stravinsky
Bach 3, 1 0, 0

Stravinsky 0, 0 1, 3

One-deviation property still holds; backward-induction result doesn’t (pure
equilibria need not exist – Matching Pennies)



Backwards induction and iterated elimination of weakly dominated strate-

gies (IEWDS)

1. If Γ = hN,H,P, (%i)i∈Ni is such that no player is indifferent between
any of the terminal nodes (e.g. all payoffs distinct), then there is a

unique subgame perfect equilibrium. There is a process of iterated

elimination of weakly dominated strategies (IEWDS) under which this

subgame perfect equilibrium survives. (Idea: follow backwards induc-

tion).

2. Other orders of elimination may eliminate all subgame perfect equilib-

ria.

3. If there are ties in the payoffs, IEWDS may eliminate all subgame

perfect equilibria or result in outcomes that aren’t even equilibria (p.

109-110).



Illustration of IEWDS to keep subgame perfect equilibrium

Example 6.

A

B F

E

D

C

3,3 1,1 0,2

2,0
1 2 1

Strategic form:

C D
AE 2, 0 1, 1
AF 0, 2 1, 1
BE 3, 3 3, 3
BF 3, 3 3, 3



Backwards induction: AF weakly dominated by AE, then C weakly dom-

inated by D, then AE weakly dominated by BE.

Other order eliminates the subgame perfect equilibrium: AE weakly domi-

nated by BE, then D weakly dominated by C, then AF weakly dominated

by BE.



Forward induction

Recall example 5: Player 1 chooses to stay home and end the game with

payoffs (2, 2) or to play a battle of the sexes game:

Bach Stravinsky
Bach 3, 1 0, 0

Stravinsky 0, 0 1, 3

Reduced strategic form:

Bach Stravinsky
Home 2, 2 2, 2
Bach 3, 1 0, 0

Stravinsky 0, 0 1, 3

Subgame perfect equilibria?

IEWDS?



Forward induction bases reasoning on what happened earlier in the game:

• If pl 2 needs to make a choice, that pl 1 gave up payoff 2.

• That makes sense only if he chooses Bach in the battle-of-the-sexes
game.

• Pl 2’s best response is also to choose Bach.

This type of reasoning applies to a limited class of games, though.


