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My part of the course treats:

1 Extensive form games.
This part consists of the first three lectures.

2 Introduction to matching problems.
This was the topic of the 2012 ‘Nobel prize in economics’; my
fourth lecture.

Jörgen covered parts of Ch. 4 and 5 succinctly; I will do so in more
detail. Moreover, I cover Ch. 14. For the fourth lecture, I will refer
to some articles. A reading guide will be posted on the course web.

Topic 1: defining games and strategies

Drawing a game tree is usually the most informative way to represent
an extensive form game. Here is one with an initial (c)hance move:

For LATEX gurus: Is there a neat, quick way to draw game trees with
TikZ?
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Extensive form game: formal definition

A (directed, rooted) tree; i.e. it has a well-defined initial node.
Nodes can be of three types:

1 chance nodes: where chance/nature chooses a branch
according to a given/known probability distribution;
Let τ assign to each chance node a prob distr over feasible
branches.

2 decision nodes: where a player chooses a branch;
3 end nodes: where there are no more decisions to be made and

each player i gets a payoff/utility given by a utility function ui .

A function P assigns to each decision node a player i in player
set N who gets to decide there.
Decision nodes P−1(i) of player i are partitioned into
information sets.
Nodes in an information set of player i are ‘indistinguishable’
to player i ; this requires, for instance, the same actions in
each decision node of the information set.
If h is an information set of player i , write P(h) = i and let
A(h) be the feasible actions in info set h.
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Not allowed:

Since nodes in an information set are indistinguishable, information
sets like

are not allowed: since there are two actions in the left node and
three in the right, they are easily distinguishable.
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We call an extensive form game finite if it has finitely many nodes.
An extensive form game has

perfect information if each information set consists of only
one node.

perfect recall if each player recalls exactly what he did in the
past.
Formally: on the path from the initial node to a decision node
x of player i , list in chronological order which information sets
of i were encountered and what i did there. Call this list the
experience Xi (x) of i in node x . The game has perfect recall if
nodes in the same information set have the same experience.

otherwise, the game has imperfect information/recall.

Convention: we often characterize nodes in the tree by describing
the sequence of actions that leads to them. For instance:

the initial node of the tree is denoted by ∅;
node (a1, a2, a3) is reached after three steps/branches/actions:
first a1, then a2, then a3.
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Imperfect recall: absentminded driver

Two crossings on your way home. You need to (C)ontinue on the
first, (E)xit on the second. But you don’t recall whether you already
passed a crossing.

Only one information set, {∅,C}, but with different experiences:

in the first node: X1(∅) = ({∅,C})
in the second node:
X1(C ) = ( {∅,C}︸ ︷︷ ︸

1’s first info set

, C︸︷︷︸
choice there

, {∅,C}︸ ︷︷ ︸
resulting info set

)

X1(∅) 6= X1(C ): imperfect recall!
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Second example of imperfect recall

Player 1 forgets the initial choice:

Different experiences in the two nodes of information set {L,R}:
in the left node: X1(L) = ( ∅︸︷︷︸

initial node

, L︸︷︷︸
choice there

, {L,R}︸ ︷︷ ︸
resulting info set

)

in the right node: X1(R) = (∅,R, {L,R}).

X1(L) 6= X1(R): imperfect recall!
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Third example of imperfect recall

Player 1 knew the chance move, but forgot it:

Different experiences in the two nodes of information set {(L,C ), (R,C )}:

in the left node:
X1((L,C )) = ( {L}︸︷︷︸

1’s first info set

, C︸︷︷︸
choice there

, {(L,C ), (R,C )}︸ ︷︷ ︸
resulting info set

)

in the right node: X1((R,C )) = ({R},C , {(L,C ), (R,C )}).

X1((L,C )) 6= X1((R,C )): imperfect recall!
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Pure, mixed, and behavioral strategies

A pure strategy of player i is a function si that assigns to each
information set h of player i a feasible action si (h) ∈ A(h).

A mixed strategy of player i is a probability distribution σi
over i ’s pure strategies.
σi (si ) ∈ [0, 1] is the prob assigned to pure strategy si .
‘Global randomization’ at the beginning of the game.

A behavioral strategy of player i is a function bi that assigns
to each information set h of player i a probability distribution
over the feasible actions A(h).
bi (h)(a) is the prob of action a ∈ A(h).
‘Local randomization’ as play proceeds.

Let us consider the difference between these three kinds of strategies
in a few examples.
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The difference between mixed and behavioral strategies

Imperfect recall; 4 outcomes with payoffs a, b, c , and d .

Four pure strategies, abbreviated AC ,AD,BC ,BD.

Mixed strategies: probability distributions over the 4 pure
strategies. A vector (pAC , pAD , pBC , pBD) of nonnegative
numbers, adding up to one, with px the probability assigned
to pure strategy x ∈ {AC ,AD,BC ,BD}.
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Behavioral strategies assign to each information set a
probability distribution over the available actions. Since pl. 1
has 2 information sets, each with 2 actions, it is summarized
by a pair (p, q) ∈ [0, 1]× [0, 1], where p ∈ [0, 1] is the
probability assigned to action A in the initial node (and 1− p
to B) and q is the probability assigned to action C in
information set {A,B} (and 1− q to D).

Mixed strategy (1/2, 0, 0, 1/2) assigns probability 1/2 to each
of the outcomes a and d . There is no such behavioral
strategy:

reaching a with positive probability requires that p, q > 0;
reaching d with positive probability requires p, q < 1;
hence also b and c are reached with positive probability.
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A trickier example: the absentminded driver revisited

Pure strategies: C with payoff 1 and E with payoff 0.
Mixed: let p ∈ [0, 1] be the prob of choosing pure strategy C
and 1− p the prob of pure strategy E . Expected payoff: p.
Behavioral: let q ∈ [0, 1] be the prob of choosing action C in
the info set and 1− q the prob of choosing E in the info set.
Expected payoff:

0 · (1− q) + 4 · q(1− q) + 1 · q2 = q(4− 3q).

No behavioral strategy is outcome-equivalent with p = 1/2
(why?)
No mixed strategy is outcome-equivalent with q = 1/2 (why?)
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Outcome-equivalence under perfect recall

Conclude: under imperfect recall, mixed and behavioral strategies
might generate different probability distributions over end nodes.
Perfect recall helps to rule this out. We need a few definitions:
Each profile b = (bi )i∈N of behavioral strategies induces an outcome
O(b), a probability distribution over end nodes.
How to compute O(b) in finite games?
The probability of reaching end node x = (a1, . . . , ak), described by
the sequence of actions/branches leading to it, is simply the product
of the probabilities of each separate branch:

k−1∏
`=0

bP(a1,...,a`)(a1, . . . , a`)(a`+1).
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Likewise, each profile σ = (σi )i∈N of mixed strategies induces an
outcome O(σ), a probability distribution over end nodes.
How to compute O(σ) in finite games?

Let x = (a1, . . . , ak) be a node, described by the sequence of
actions/branches in the game tree leading to it.
Pure strategy si of player i is consistent with x if i chooses
the actions described by x : for each initial segment
(a1, . . . , a`) with ` < k and P(a1, . . . , a`) = i :

si (a1, . . . , a`) = a`+1.

The prob of choosing a pure strategy si consistent with x is

πi (x) =
∑

σi (si ),

with summation over the si consistent with x .
Similar for nature, whose behavior is given by function τ .
The probability of reaching end node x is∏

i∈N∪{c}

πi (x).
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A mixed strategy σi and a behavioral strategy bi of player i are
outcome-equivalent if — given the pure strategies of the remaining
players — they give rise to the same outcome:

for all s−i : O(σi , s−i ) = O(bi , s−i ).

Theorem (Outcome equivalence under perfect recall)

In a finite extensive form game with perfect recall:

(a) each behavioral strategy has an outcome-equivalent mixed
strategy,

(b) each mixed strategy has an outcome-equivalent behavioral
strategy.
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Proof sketch:

(a) Given beh. str. bi , assign to pure strategy si the probability

σi (si ) =
∏
h

bi (h)(si (h)),

with the product taken over all info sets h of pl i .
Intuition: si selects action si (h) in information set h. How
likely is that?

(b) Given mixed str. σi . Consider an info set h of pl i and a
feasible action a ∈ A(h). How should we define bi (h)(a)?
Consider any node x in info set h. The probability of choosing
consistent with x is πi (x).
Perfect recall: πi (x) = πi (y) for all x , y ∈ h.
Define

bi (h)(a) =
πi (x , a)

πi (x)
if πi (x) > 0 (and arbitrarily otherwise)

Intuition: conditional on earlier behavior that is consistent
with reaching information set h, how likely is i to choose
action a?
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Example of outcome equivalent strategies

Which behavioral strategy is outcome-equivalent with mixed strat-
egy (pAC , pAD , pBC , pBD)?
In 1’s first information set, the prob that A is chosen is pAC + pAD .
In 1’s second information set, the prob that C is chosen is computed
as the probability of choosing C conditional on earlier behavior that
is consistent with this information set being reached:

pAC

pAC + pAD
.
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Example of outcome equivalent strategies

Which mixed strategy is outcome equivalent with the behavioral
strategy choosing A with prob p and C with prob q?

(pAC , pAD , pBC , pBD) = (pq, p(1− q), (1− p)q, (1− p)(1− q))
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Homework exercise 1

(a) Show that the game above has perfect recall.

(b) For each mixed strategy σ1 of player 1, find the
outcome-equivalent behavioral strategies.

(c) For each behavioral strategy b1 of player 1, find the
outcome-equivalent mixed strategies.
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Nash equilibrium

We can compute, for each profile of pure strategies, the
corresponding (expected) payoffs: every extensive form game
has a corresponding strategic game. (See already Jörgen’s
lectures)

A pure/mixed Nash equilibrium of the extensive form game is
then simply a pure/mixed Nash equilibrium of the
corresponding strategic game.

Nash equilibria in behavioral strategies are defined likewise: a
profile of behavioral strategies is a Nash equilibrium if no
player can achieve a higher expected payoff by unilaterally
deviating to a different behavioral strategy.
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Theorem (Equilibrium existence)

Every finite extensive form game with perfect recall has a Nash
equilibrium in mixed/behavioral strategies.

Proof: finite extensive form game gives finite strategic game, which
has a Nash equilibrium in mixed strategies. By outcome-equivalence,
we can construct a Nash equilibrium in behavioral strategies.

Mark Voorneveld Game theory SF2972, Extensive form games 20/52

Strategic form analysis of extensive form games

The extensive form game

has corresponding strategic form
L R

A 0, 0 2, 1
B 1, 2 1, 2

Pure Nash equilibria: (B, L) and (A,R).
But if pl. 2 is called upon to play, would 2 choose L? This is an
implausible choice in the ‘subgame’ that starts at node A!
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Subgame perfect equilibrium

In an extensive form game with perfect information, let x be a
node of the tree that is not an end node. The part of the
game tree consisting of all nodes that can be reached from x
is called a subgame.

Each game is a subgame of itself. A subgame on a strictly
smaller set of nodes is called a proper subgame.

A subgame perfect equilibrium is a strategy profile that
induces a Nash equilibrium in each subgame.

In the game on the previous slide, only (A,R) is subgame perfect.
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Subgame perfect equilibria via backward induction

Subgame perfect equilibria are typically found by backward induc-
tion:

1 Start with subgames with only one decision left. Determine
the optimal actions there.

2 Next, look at subgames with at most two consecutive
decisions left. Conditioning on the previous step, the first
player to choose (say i) knows what a ‘rational’ player will do
in the subgame that starts after i ’s choice, so it is easy to find
i ’s optimal action.

3 Continue with subgames of at most 3 consecutive moves, etc.
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Backward induction: example 1

Strategic form:
C D

AE 1, 3 1, 3
AF 1, 3 1, 3
BE 2, 1 0, 2
BF 2, 1 1, 0

Pure Nash equilibria: (AE ,D), (AF ,D), and (BF ,C ).
Subgame perfect equilibrium: (BF ,C )

Mark Voorneveld Game theory SF2972, Extensive form games 24/52

Backward induction: example 2

Dividing 2 indivisible objects. Pl. 1 proposes, pl. 2 accepts or
rejects.

How many pure strategies for player 1? 3
How many pure strategies for player 2? 23 = 8
Subgame perfect equilibria? ((2, 0), yyy) and ((1, 1), nyy)
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Backward induction: the ‘rotten kid’ game

A child’s action a from some nonempty, finite set A affect
both her own payoff c(a) and her parents’ payoff p(a); for all
a ∈ A we have 0 ≤ c(a) < p(a).

The child is selfish: she cares only about the amount of
money she receives.

Her loving parents care both about how much money they
have and how much their child has. Specifically, model the
parents as a single player whose utility is the smaller of the
amount of money the parents have and the amount the child
has. The parents may transfer money to the child (pocket
money, trust fund, etc).

First the child chooses action a ∈ A.

Then the parents observe the action and decide how much
money x ∈ [0, p(a)] to transfer to the child. The game ends
with utility c(a) + x for the child and min{c(a) + x , p(a)− x}
to the parents.

Mark Voorneveld Game theory SF2972, Extensive form games 26/52

Show: in a subgame perfect equilibrium, the child takes an action
that maximizes the sum of her private income c(a) and her parents’
income p(a). Not so selfish after all!

In the subgame after action a ∈ A, the parents maximize
min{c(a) + x , p(a)− x} over x ∈ [0, p(a)].

This is done by choosing x such that c(a) + x = p(a)− x ,
i.e., by x∗(a) = 1

2 (p(a)− c(a)).

Anticipating this, the child knows that action a ∈ A leads to
transfer x∗(a) and consequently utility
c(a) + x∗(a) = 1

2 (c(a) + p(a)). Maximizing this expression is
equivalent with maximizing c(a) + p(a).
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Finite trees: existence of subgame perfect equilibria

Using backward induction, if there are only finitely many nodes, the
first player to move — conditioning on the optimal behavior in the
smaller subgames — is optimizing over a finite set: an optimum will
always exist. Using this, one can show:

Theorem (Existence of subgame perfect equilibria)

In a finite extensive form game with perfect information, there is
always a subgame perfect equilibrium in pure strategies.

That’s a pretty nice result:

1 no need to consider randomization

2 no implausible behavior in subgames

As an aside: what if there are infinitely many nodes?
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Centipede games

Although subgame perfect equilibria were introduced to rule out
implausible behavior in subgames, there are examples where such
equilibria lead to outcomes that some people find counterintuitive.
This is sometimes corroborated with experimental support. One
well-known example consists of Rosenthal’s centipede games, char-
acterized by the following properties:

Players 1 and 2 take turns during at most 2T rounds (T ∈ N).

At each decision node, the player can choose to (S)top or
(C)ontinue.

The game ends (i) if one of the players decides to stop, or (ii)
if no player has chosen stop after 2T periods.

For each player, the outcome when he stops the game in
period t is:

better than the outcome if the other player stops in period
t + 1 (or the game ends),
worse than any outcome that is reached if in period t + 1 the
other player continues.
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Centipede games

Here is an example of a centipede game with 6 periods:

It is tempting to continue the game if you can be sure that the other
player does so as well: the longer the game goes on, the higher the
payoffs.
But in the unique subgame perfect equilibrium, players choose (S)top
in each node. In particular, the game ends immediately in the initial
node.
Reason: in the final node, player 2’s best reply is to (S)top. Given
that 2 (S)tops in the final round, 1’s best reply is to stop one period
earlier, etc.
There are other Nash equilibria, but they all lead to the same out-
come: player 1 ends the game immediately.
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Subgame perfect equilibria in games with perfect information
require each player to play a best reply to other players’
strategies in each subgame — regardless of whether that
subgame is reached or not.

It is possible to extend the notion of subgame perfect
equilibria to games with imperfect information. But the
definition of subgames is trickier: information sets must lie
entirely outside the subgame or entirely inside the subgame.

Formally, let x be a (non-end) node and let V x be the nodes
of the tree that can be reached from x . A well-defined
subgame starts at x if and only if each information set h of
the original game is a subset of V x or is a subset of its
complement.

Since extensive form games with imperfect information need
not have proper subgames, the notion of subgame perfection
typically has little ‘bite’.
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Homework exercise 2

In the game of homework exercise 1:

(a) Find the corresponding strategic game.

(b) Find all pure-strategy Nash equilibria.

(c) What is the outcome of iterated elimination of weakly
dominated (pure) strategies?

(d) Find all subgame perfect equilibria (in behavioral strategies).
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Another plausible generalization of the notion of subgame perfect
equilibria to games with imperfect information would be

require best responses in each information set.

Problem: the best response depends on where in the information
set the player believes to be!
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The following game has no proper subgames:

Beliefs affect optimal strategies: consider pl 2 in info set {M,R}. A
is a best response if and only if the player assigns at most prob 1/2
to being in node M.
Strategies affect reasonable beliefs: If pl 1 assigns to actions (L,M,R)
probabilities

(
1

10 ,
3

10 ,
6

10

)
, pl 2 is twice as likely to end up in node

R than in node M. Bayes’ law requires that he assigns conditional
prob 1/3 to M and 2/3 to R.
Question: What are reasonable beliefs if 1 chooses L with prob 1?

Mark Voorneveld Game theory SF2972, Extensive form games 34/52

Assessments

We consider two requirements on beliefs that give different answers
to the final question:

1 Bayesian consistency: in information sets that are reached
with positive probability, beliefs are determined by Bayes’ law.
In information sets reached with zero probability, beliefs are
allowed to be arbitrary.

2 Consistency: beliefs are determined as a limit of cases where
everything happens with positive probability and —
consequently — where Bayes’ law can be used.

In particular, in both of these notions, we need to define two things:
strategies and beliefs over the nodes in the information sets. The
difference will lie in the constraints that are imposed.
Formally, consider a finite extensive form game with perfect recall.
An assessment is a pair (b, β), where

b = (bi )i∈N is a profile of behavioral strategies and
β is a belief system, assigning to each information set h a
probability distribution βh over its nodes.
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Two belief requirements

Given node x and behavioral strategies b, let Pb(x) be the probability
that node x is reached using b: it is the product of the probabilities
assigned to the branches leading to x . Similarly, if h is an information
set, it is reached with probability Pb(h) =

∑
x∈h Pb(x).

Assessment (b, β) is:

Bayesian consistent if beliefs in information sets reached with
positive probability are determined by Bayes’ law:

βh(x) = Pb(x)/Pb(h)

for every info set h with Pb(h) > 0 and every node x ∈ h.

consistent if there is a sequence of Bayesian consistent
assessments (bm, βm)m∈N with each bm completely mixed (all
actions in all info sets have positive prob) and
limm→∞(bm, βm) = (b, β).

Note: (b, β) consistent ⇒ (b, β) Bayesian consistent.
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Homework exercise 3

In the game above, where payoffs are omitted since they are irrele-
vant to the question:

(a) Find all Bayesian consistent assessments (b, β).

(b) Find all consistent assessments (b, β).

Mark Voorneveld Game theory SF2972, Extensive form games 37/52

Expected payoffs in information sets

Fix assessment (b, β) and an information set h of player i . To
formalize the requirement that i plays a best response in info set h,
we need to specify i ’s expected payoff:

1 Conditional on i being in his info set h, belief system β
assigns probability βh(x) to being in node x ∈ h.

2 Given such a node x , the probability P(e | b, x) that an end
node e is reached, conditional on starting in x and using
strategies b is

zero if e cannot be reached from x ;
the product of the probabilities of the corresponding branches
from x to e otherwise.

3 In end node e, the payoff to i equals ui (e).
4 So the expected payoff to agent i in his information set h,

given assessment (b, β) is

ui (bi , b−i | h, β) =
∑
x∈h

βh(x)

(∑
e

P(e | b, x)ui (e)

)
.
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Sequential rationality

Assessment (b, β) is sequentially rational if each player i in each of
his information sets h chooses a best response to the belief system
β and the strategies of the other players:

ui (bi , b−i | h, β) ≥ ui (b′i , b−i | h, β)

for all other behavioral strategies b′i of player i .
Note:

1 consistency says that beliefs have to make sense given the
strategies, without requirements on the strategies;

2 sequential rationality says that strategies have to make sense
given the beliefs, without requirements on the beliefs.

Putting the two together, we have:
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Perfect Bayesian equilibria and sequential equilibrium

An assessment (b, β) is a sequential equilibrium if it is consistent
and sequentially rational.

Theorem (Relations between solution concepts for extensive form
games)

(a) Each finite extensive form game with perfect recall has a
sequential equilibrium.

(b) If assessment (b, β) is a sequential equilibrium, then b is a
subgame perfect equilibrium and (hence) a Nash equilibrium.
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Proof sketch

(a) Via perfect equilibria of an auxiliary ‘agent-strategic form
game’:

Each player i is split up into agents, one agent for each of i ’s
information sets;
Agents of i have the same preferences as i ;
A mixed strategy in this agent-strategic form game is a
behavioral strategy in the original game;
Consider a completely mixed seq bm → b making b a perfect
equilibrium
For each bm, Bayes’ law gives a belief system βm.
Drawing a convergent subsequence if necessary, we can show
that limm→∞(bm, βm) = (b, β) is a sequential equilibrium.

(b) Suppose not. Let i have a profitable deviation b′i in a
subgame starting at some node x . Hence, in this subgame
there has to be an information set that is reached with
positive probability and where i has a profitable deviation,
contradicting sequential rationality and correctness of beliefs.
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Compute the sequential equilibria of the game below:

Intuition: What should it be? Player 1 chooses between sure payoffs
(6, 0) or the strategic game

C D
E 8, 0 0, 8
F 0, 8 8, 0
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Behavioral strategies b = (b1, b2) can be summarized by three prob-
abilities:

1 p, the prob that 1 chooses A in the initial node;

2 q, the prob that 2 chooses C in his information set {A};
3 r , the prob that 1 chooses E in information set
{(A,C ), (A,D)}.

Belief system β can be summarized by one probability α, the prob as-
signed to the left node (A,C ) in the information set {(A,C ), (A,D)}.
Consistency: completely mixed beh. str. have p, q, r ∈ (0, 1).
Bayes’ law then gives

α =
pq

pq + p(1− q)
= q,

So for each consistent assessment (b, β), it follows that α = q.
Which of these assessments also satisfies sequential rationality?
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Distinguish 3 cases:
1 If q = 0, then α = 0, so r = 0 is 1’s unique best reply in the

final info set. But if r = 0, then q = 0 is not a best reply in
2’s info set. Contradiction.

2 If q = 1, then α = 1, so r = 1 is 1’s unique best reply in the
final info set. But if r = 1, then q = 1 is not a best reply in
2’s info set. Contradiction.

3 If q ∈ (0, 1), rationality in 2’s info set {A} dictates that both
C and D must be optimal. C gives 8(1− r), D gives 8r , so
r = 1/2.
In the info set {(A,C ), (A,D)} of pl. 1, his expected payoff is

α[8r ] + (1− α)[8(1− r)] =︸︷︷︸
α=q

= 8− 8q + 8r(2q − 1).

Choosing r = 1/2 is rational only if q = 1/2.
Finally, in the initial node, A gives expected payoff 4 and B
gives expected payoff 6, so p = 0.

Conclude: there is a unique sequential equilibrium with p = 0, q =
r = α = 1/2.
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Homework exercise 4

Find the sequential equilibria (b, β) of the game in homework exer-
cise 1.
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Perfect Bayesian equilibrium

Economists sometimes use perfect Bayesian equilibria, a
notion that is more restrictive than subgame perfection, but
less restrictive than sequential equilibrium.

The intuition is that assessments are derived from strategies
following Bayes’ law whenever possible, but the exact
definition of ‘whenever possible’ differs.

Therefore, I will not discuss this notion further: if you have a
carefully written game theory paper, the authors will make
their equilibrium notion precise.

In practice, a common requirement is that beliefs have to be
Bayesian consistent with strategies in the game itself, but also
in its subgames.
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Signalling games

1 Chance chooses a type t from some nonempty finite set T
according to known prob distr P with P(t) > 0 for all t ∈ T .

2 Pl. 1 (the sender) observes t and chooses a message m ∈ M
in some nonempty finite set of messages M.

3 Pl. 2 (the receiver) observes m (not t) and chooses an action
a ∈ A in some nonempty finite set of actions A.

4 The game ends with utilities (u1(t,m, a), u2(t,m, a)).

A pure strategy for player 1 is a function s1 : T → M and a pure
strategy for player 2 is a function s2 : M → A.
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Separating and pooling equilibria in signalling games

In signalling games, it is common to restrict attention to equilibria
equilibria (s1, s2, β), where

s1 and s2 are pure strategies;

assessment (s1, s2, β) is Bayesian consistent;

assessment (s1, s2, β) is sequentially rational.

Sometimes it is in the sender’s interest to try to communicate her
type to the receiver by sending different messages for different types

s1(t) = s1(t ′) for all t, t ′ ∈ T .

In such cases we call the equilibrium (s1, s2, β) a separating equilib-
rium.
In other cases, the sender might want to keep her signal a secret to
the receiver and send the same message for each type:

s1(t) 6= s1(t ′) for all t, t ′ ∈ T .

In such cases we call the equilibrium (s1, s2, β) a pooling equilibrium.
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Signalling games: example

In the signalling game above:

(a) Find the corresponding strategic form game and its
pure-strategy Nash equilibria.

(b) Determine (if any) the game’s pooling equilibria.

(c) Determine (if any) the game’s separating equilibria.
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Homework exercise 5

In the signalling game above:

(a) Find the corresponding strategic form game and its
pure-strategy Nash equilibria.

(b) Determine (if any) the game’s pooling equilibria.

(c) Determine (if any) the game’s separating equilibria.
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Bayesian games

Bayesian games are special imperfect information games where an
initial chance move assigns to each player a privately known type.
Knowing their own type, they choose an action (simultaneously, in-
dependently) and the game ends. Formally, the timing is as follows:

1 Chance chooses a vector t = (ti )i∈N of types, one for each
player, from a nonempty, finite product set ×i∈NTi of types,
according to known prob distr P with P(t) > 0 for all
t = (ti )i∈N ∈ ×i∈NTi .

2 Each player i observes only her own type ti and chooses an
action ai from some nonempty set Ai .

3 The game ends with utility ui (a1, . . . , an, t1, . . . , tn) to player
i ∈ N = {1, . . . , n}.

Since i ∈ N observes only ti ∈ Ti , a pure strategy of player i is a
function si : Ti → Ai . Mixed and behavioral strategies are defined
likewise.
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Bayesian equilibrium

Given her type, i updates her beliefs over other players’ types t−i
using Bayes’ Law: if she is of type t∗i , she assigns probability

P(t−i | t∗i ) =
P(t∗i , t−i )

P{t ∈ ×j∈Ntj | ti = t∗i }

to the others having types t−i ∈ ×j 6=iTj . Hence, her expected payoff
given type ti is

ui (s1, . . . , sn | ti ) =
∑

t−i∈T−i

P(t−i | t∗i )ui (s1(t1), . . . , sn(tn), t1, . . . , tn).

It makes sense to require that each player i , for each possible type
ti , chooses her action optimally. That is, si (ti ) should solve

max
ai

∑
t−i∈T−i

P(t−i | ti )ui (s1(t1), . . . , ai , . . . , sn(tn), t1, . . . , ti , . . . , tn).

Strategies satisfying this requirement form a Bayesian equilibrium.
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