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1 Informally about the extensive form

• Is it always better to be the more informed party?

• If you are one of the players in a two-player game, would you like to be
informed about the other player’s move before you make your move,

or would you rather prefer that the other player is informed about your

move before making his?
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Game 1

• Player 2 is informed about player 1’s move, before 2 makes her move

• A game of perfect information

• Better to be uninformed, to be the first mover (a first-mover advantage)



• Suppose that no player is informed about the other’s move:
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Game 2

• In this game, player 2 cannot condition his choice on 1’s action (nor can 1 condition

on 2’s move)

• A game of imperfect information



• Are there games in which it is better to be informed, that is, with a
second-mover advantage?



• A fox (player 1) and a rabbit (player 2), each choosing between two
locations, A and B.

• If you were the rabbit (fox), would you like to choose first or second?

• If the fox chooses first:
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Game 3



2 Incomplete information

• In many strategic interactions, the actors know the “rules of the game”
but not each others’ preferences

• Such situations of incomplete information are modelled as games of
imperfect information [Harsanyi (1967-8)]

• Create a “metagame” by introducing a neutral player, “nature”, or
“player 0”, who makes a random draw from the set of possible games,

one for each possible combination of preferences

• An extensive-form game with an initial random move by “nature”.



2.1 Example

• Two competing firms who know the prior probabilities, , for the pos-
sible cost constellations, ( ), ( ), ( ), ( )

They use Bayes’ law to infer the posterior probability distribution for
the other firm’s cost, given their own cost:

Pr [Firm 2’s cost is  | 1’s cost is ] =
 ( )

 ( ) +  ( )

• Let ”nature” (”player 0”) first randomly draw the actual ”world”, ,
from four possible ”worlds,”

 ∈ Ω = {( )  ( )  ( )  ( )}
each with a prior probability as above.

• After that initial draw by nature, inform each firm of its own cost (and
only that).



3 The normal form

• The normal form is a summary representation that specifies what pay-

offs every player gets, for any combination of strategies.

• It is very convenient for analysis!

• This first part of the course will focus on normal-form analysis.
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Game 1

Normal form:
   

 3 1 3 1 0 0 0 0
 0 0 1 3 0 0 1 3
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Game 2

normal form:
 

 3 1 0 0
 0 0 1 3



• Generally:

Definition 3.1 A normal-form game is a triplet  = h i where

(a)  = {1 2  } is the set of players

(b)  = ×∈ is the set of strategy profiles,  = (1  ) ∈ , and

 is the strategy set of player 

(c)  :  → R is the combined payoff function, where  () ∈ R the

payoff to player  when profile  is played

• From an abstract mathematical viewpoint, a normal-form game is any

function  : ×∈→ R| |



3.1 Example: Entry-deterrence

A potential entrant (player 1) into a monopolist’s (player 2) market

C F
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Game 4

Normal form:

 
 1 3 1 3
 2 2 0 0



4 Nash equilibrium a bit more formally

• Notation: Given a strategy profile  = (1  ) ∈  and any strategy

0 ∈ : write
³
0 −

´
∈  for the strategy profile in which player 

uses strategy 0 while the others stick to their strategies in .

Definition 4.1 A strategy profile  ∈  in a normal-form game  =

h i is a Nash equilibrium if

 () ≥ 
³
0 −

´
∀ ∈  0 ∈ 

• Each player’s strategy is a best reply to the others’ strategies
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• Reconsider earlier examples!



5 Mathematics

5.1 Notation, concepts and theorems

1. Useful sets: N the positive integers, R the reals, R+ the non-negative
reals, R++ the positive reals. Euclidean spaces R for  ∈ N etc.

2. Standard definitions: open, closed and bounded sets  ⊂ R, the
interior and closure of sets  ⊂ R, continuous functions  : R→ R
(see any math book)

Definition 5.1 A set  ⊆ R is convex if

  ∈  ⇒ + (1− )  ∈  ∀ ∈ [0 1]



Definition 5.2 A upper-contour set for a function  : R → R is any set
 ⊆ R such that

 = { ∈ R :  () ≥ }

for some  ∈ R.

Definition 5.3 A function  : R → R is quasi-concave if all its upper

contour-sets are convex



Given a function  :  → R, we will use the following notation for its set
of maximands, points  ∈  at which it attains its maximal value:

∗ = argmax
∈

 () = {∗ ∈  :  (∗) ≥  () ∀ ∈ }

This may well be the empty set, ∅. For example, let  = R and  () ≡ .

Theorem 5.1 (Weierstrass’ Maxium Theorem) If  ⊂ R is non-empty
and compact, and  : R → R is continuous, then ∗ is non-empty and
compact.

Another useful result:

Proposition 5.2 If  ⊆ R is convex and  : R→ R quasi-concave, then
∗ is convex.



5.2 Correspondences

A correspondence  from a set  to a set  , written  :  ⇒  , is a

function that assigns a non-empty set  () ⊆  to each  ∈ .

Let  ⊆ R and  ⊆ R for some  ∈ N.

Definition 5.4  :  ⇒  is upper hemi-continuous (u.h.c.) at  ∈  if

for every open set  containing () there exists an open set  containing

 such that

0 ∈  ∩ ⇒ (0) ⊂ 

•  is u.h.c. if it is u.h.c. at each point  in its domain .



5.3 Berge’s Maximum Theorem

(A special case.) Let  : R × R → R be continuous,   ∈ N, and let
 be non-empty and compact. For each  ∈ R, define

() = max
∈

 ( )

() = arg max
∈

 ( )

Theorem 5.3 (Berge’s Maximum Theorem) If  : R × R → R is con-

tinuous, then  : R ⇒ R is u.h.c. and  : R → R is continuous.



5.4 Fixed-Point Theorems

Theorem 5.4 (Brouwer’s Fixed-Point Theorem) If  ⊂ R is non-empty,
compact and convex, and  :  →  is continuous, then there exists at

least one ∗ ∈  such that ∗ =  (∗).

• A correspondence  :  ⇒  is closed-valued (convex-valued) if  ()

is closed (convex) for every  ∈ .

Theorem 5.5 (Kakutani’s Fixed-Point Theorem) If ⊂ R is non-empty,
compact and convex, and  :  ⇒  is convex-valued, closed-valued and

u.h.c., then there exists at least one ∗ ∈  such that ∗ ∈  (∗).



6 Existence of Nash equilibrium

On the basis of the above mathematics, one can establish existence of Nash

equilibrium for a wide class of games.

By a Euclidean game we mean a game in which each player’s strategy set

is a subset of some Euclidean space. [For each player  ∈  :  ⊆ R for

some  ∈ N.]

Theorem 6.1 (T1) Let  = h i be a Euclidean game in which each
strategy set  is non-empty, compact and convex, and each payoff function

 :  → R is continuous. If each payoff function  is quasi-concave in

 ∈  (for any given − ∈ −) then  has at least one Nash equilibrium.



Proof: For each player , let  :  ⇒  be the player’s best-reply corre-

spondence, defined by

 () = arg max
0∈


³
0 −

´
By Weierstrass’ Maximum Theorem,  () is non-empty and compact for

every  ∈ . By quasi-concavity and the convexity of ,  () is convex.

Hence also the combined best-reply correspondence  :  ⇒ , defined by

 () = ×∈ (), has these properties. By Berge’s Maximum Theorem,

each correspondence  is upper hemi-continuous, and hence so is . Thus

all conditions in Kakutani’s Fixed-Point Theorem are met, so  admits a

fixed point. A strategy profile  ∈  is a fixed point under  if and only if

 is a Nash equilibrium. Q.E.D.


