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o Let G = (N, S, ) be a finite game, where
— N is the finite set of (personal) players
— S = X;eNS; is the finite set of strategy profiles s = (s, .., sn)
— m is the joint payoff function, 7; (s1,..,sn) € R being the payoff

to player ¢ when profile s is played

e We will henceforth consider the mixed-strategy extension G = (N, [(S), #)
of G, the normal-form game in which a strategy for each player 7 is a
probability distribution over the finite set S5,

e We need to specify [:](S) and 7 : I (S) — R"



1 Mixed-strategy sets

Let m; be the number of pure strategies available to player i: m; = |.S;|

e The mixed-strategy set for player + € N is the unit simplex spanned
by his/her pure strategies:

m;
Aj=A(S;) ={z e RY Y ay, =1}
h=1

e The support of any given mixed strategy z;: supp(z;) ={h € S; : ©;;, > 0}

e The vertices of A; are the unit vectors, ezh fort € N, h € S; [inter-
preted as pure strategies|



e Interior or completely mixed strategies:
int(A;) ={x; € Az, >0Vh € S}

then all ¢'s pure strategies are played with positive probability



Example: m; = 3
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e The polyhedron of mixed-strategy profiles:
X =D(S5) = XieNDi = XjeNA(S;)

e Example: [J(S) when n = mq = my = 2:
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e Draw a picture of [J(S) when n =my =2 and m; =3



For any player i € N and pure strategy s; = h € S;, write x; (s;) for x;p,

e The payoff function 7; : [1(S) — R of each player ¢ € N assigns
to each mixed-strategy profile x = (z1, .., zn) € [J(S) the associated
expected value of i's payoff when strategy profile = is played:

#i(z) =) [”jeli’fj (Sj)] m; (s)

seS

e Note the assumed statistical independence between different players’
randomizations



Example 1.1 The previously studied partnership game,

C ja
C 3,3 -—1,4
F 4,-1 -2 -2

Here the payoff matrix to player 1 is

a=(§3)

and that to player 2 is B = Al (such games are called symmetric). We
thus have

71(x) =21 - Axog =3 - x11201 — 1 - z11200 + 4 - T10721 — 2 - 12722



2 Dominance relations

Definition 2.1 z¥ € A; strictly dominates 2! € A; if @;(af, z_;) >
7ti(xh, x_;) for all z € I(S).

Definition 2.2 ¥ € A; weakly dominates =, € A; if 7t;(zf,x_;) >
7ti(xh, x_;) for all z € I(S) with > for some = € [1(5).

Definition 2.3 =7 ¢ A; is weakly dominant if it weakly dominates all
strategies QS,IL € A;. A strategy that is not weakly dominated is called
undominated. A strategy that strictly dominates all other strategies is
strictly dominant.

e Example: payoff matrix to player 1

A=

= O W
= W O




payoff * ]




e lterated elimination of strictly dominated pure strategies:
(3,3 1,0 6,1 |
G=|0,1 0,0

| 1,6 2,4

4,2
5,5

e A game is called dominance solvable if the iterated elimination of
strictly dominated pure strategies results in a single pure-strategy pro-
file.



3 Best replies
e The i:th player's pure-strategy best-reply correspondence 3; : [1(S) =
S; is defined by

Bi(x) = {h € S;: (el w_;) > 7i(eF, x_;) VE € S;}

e Mixed strategies cannot give higher payoffs than pure:

Bi(x) = {h € 8 : 7yl x_y) > 7y(xh, w_y) Vab € A},

e The i:th player’'s mixed-strategy best-reply correspondence 3,: [1(S) =
A; is defined by:

Bi(z) = {xf € A;: 7i(xl,2_;) > #i(xh, ;) Vah € A}
= {xf € A; : supp(x}) C B;(z)}



e Note that 3,;(z) is a (non-empty) subsimplex

e The combined pure BR-correspondence 3 : [1(S) = S:
B(z) = XjenBi(z)

e The combined mixed BR-correspondence (3 : [1(S) = [1(S):

B(z) = xienBi(z)



3.1 Dominance vs. best replies

e Pure best replies are not strictly dominated

e If a pure strategy is not strictly dominated, is it then a best reply to
some belief?

e Pure best replies to interior strategy profiles are undominated

e If a pure strategy is undominated, is it then a best reply to some interior
belief?

Proposition 3.1 (Pearce, 1984) Suppose n = 2. Then s; € S; is not
strictly dominated iff s; € (3;(x) for some x € [1(S), and s; € S; is
undominated iff s; € B,;(x) for some x € int([J(.S)).



4 Rationalizability

e Consider a finite game in normal form, G = (N, .S, w) and assume

Al (Rationality): Each player i forms a probabilistic belief u;; €

A (Sj) about every other player j's strategy choice, a belief that
does not contradict any information or knowledge that player 2 has,
and player ¢ chooses a (pure or mixed) strategy that maximize his
or her expected payoff, assuming statistical independence between
other player’s strategy choices.

A2 (Common Knowledge): The game G and the players’ ratio-
nality (Al) is common knowledge among the players: each player
knows GG and that (A1) holds for all players, knows that all players
know this, and knows that all players know that all players know
this etc. ad infinitum.



e Question: What is the logical implication of A1 and A2?

e Answer: rationalizability!

1. For any X CA(S> let X = ><” 1%, and write
BZ(X) = {ai‘;k e A(S;):x] EBZ(x) for someazeX}

2. Write B;(0) = A (S;) and B(0) = x"_;B;(0). [Thus B(0) =
[1(9)]

3. Define the set sequence (B (t));c recursively by

B;(t+1) = B; [C (t)]

where B (t) = X_1Bj (1), C(t) = X5 1Cj (t) and



C; (t) is the convex hull of B;(t)

4. Note that B; (t + 1) C B, (t) for all ¢ and 1.
Definition 4.1 (Pearce, 1984) A strategy x; € A (S;) is rationalizable for
player ¢ if x; € B;, where
B; = NienBi (¢) -

e Let C; be the convex hull of B;

Proposition 4.1 For each i: B; # & and C; = A (T};) for some non-empty
subset T; C S;



e A set B, (t) is not necessarily convex:

Example 4.1 Consider player 1 with payoff matrix

_ 3 0 -
A=1]10 3
- 2 2 -
payoff 1 °°]
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5 Nash equilibrium
Definition 5.1 XVE = {2 € [1(5) : 2 € B(x)}.
Definition 5.2 = € XVE s strict if f(z) = {x}.

e A NE strategy cannot be strictly dominated, but may be weakly dom-
inated. Example?



Example 5.1 Reconsider the entry-deterrence game:

(1,3) (2,2) (0,0

Game 4

The strategy profile s = (A, F') is a Nash equilibrium! But F' is weakly
dominated by C. (The game has infinitely dominated Nash equilibria. Find
them!)

&
N =
o~



5.1 Existence

Theorem 5.1 (Nash, 1950) OVE +£ &

Two alternative proofs:
1. Application of Kakutani’s fixed-point theorem (Nash's first proof)

2. Application of Brouwer's fixed-point theorem (Nash's second proof).
This inspired Arrow’s and Debreu’s proof of the existence of Walrasian
equilibrium in general-equilibrium theory.



Proof 1: The polyhedron [:1(.S) is non-empty, convex and compact. Berge's
Maximum Theorem implies that 8 : [0 = [ is upper hemi-continuous. We
saw that 3(z) is a non-empty convex and closed set. Hence, Kakutani's
Fixed-Point Theorem applies, so z* € 3(z*) for at least one z* € [.

Proof 2: Let 77;:2 (x) = max {O, ﬁi(ezh, x_;) — %Z(x)} and define f : [J(S) —
[1(S5) by

Tin + 75 ()

1+ ZkESfL‘ 7721_@ (ZL‘)

Clearly f is continuous and thus has a fixed point by Brouwer’s Fixed-Point
xXNE

Vie N,h eSS

fin (z) =

Theorem. Not difficult to verify that each fixed point ™ €



