GAME THEORY — PROBLEM SET 3

Problem 1

We are playing a game of Nim (with the normal play convention) and my last move resulted in a position with five piles of sizes 26, 19, 10, 9, 7. Do you have a winning move from this position? If so, what is the maximum number of sticks you can remove in a winning move?

Problem 2

Let $G = \{\{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$ be an impartial game as represented in the lecture notes.

- (a) How many positions does G have?
- (b) Draw the directed acyclic graph that represents G.
- (c) Compute the Grundy value g(G).
- (d) Who will win the game?

Problem 3

Find the "one-line proofs" that Conway omits in ONAG Chapter 1, namely, show directly from the definitions that

(a)
$$-(x+y) \equiv (-x) + (-y)$$
,
(b) $-(-x) \equiv x$

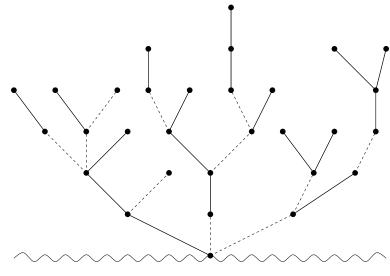
for any games x and y.

Problem 4

Show that the game $\{0|*\}$ is positive but less than any positive number!

Problem 5

Compute the value of the following Blue-Red Hackenbush position. Who will win the game?



PROBLEM 6

Let $G = \{\{7|5\}, \{10 \mid | 5|3\} \mid \{1|0\} - \{7|0\}\}.$

- (a) Draw the thermograph of G.
- (b) What is the temperature of G?
- (c) What is the mean value of G?
- (d) Who will win G?
- (e) Who will win the game 7G 20?

Problem 7

Write the following short games on canonical form:

(a) *2, (b) { {*|0}, 0 || {*|0} |* }.

PROBLEM 8

Find two different short games $G \neq H$ which have the same thermograph, that is, for any number x and any nonnegative real number t, we have $x \leq G_t \Leftrightarrow x \leq H_t$ and $x \geq G_t \Leftrightarrow x \geq H_t$.