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Equilibria in extensive form games I:

1 Nash equilibrium

2 Subgame perfect equilibrium

3 Relation between strategies and beliefs: assessments



Nash equilibrium

We can compute, for each profile of pure strategies, the
corresponding (expected) payoffs: every extensive form game
has a corresponding strategic/normal-form game.

Terminology: Jörgen used ‘normal-form game’, the book of
Peters uses ‘strategic game’.

A pure/mixed Nash equilibrium of the extensive form game is
then simply a pure/mixed Nash equilibrium of the
corresponding strategic game.

Nash equilibria in behavioral strategies are defined likewise: a
profile of behavioral strategies is a Nash equilibrium if no
player can achieve a higher expected payoff by unilaterally
deviating to a different behavioral strategy.
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Example: from extensive to strategic game

This game (from previous lecture) has strategic form:
a b

A 4,−4 0, 0
B 3,−3 1,−1

Dominance solvable, unique Nash equilibrium (B, b).

Mark Voorneveld Game theory SF2972, Extensive form games 2/25



On the definition of strategies

I asked you to think about the following: pure, mixed, and behavioral
strategies specify what happens in all information sets of a player.
Even in those information sets that cannot possibly be reached if
those strategies are used. Why do you think that is the case?
Main reason: Nash equilibrium: does each player choose a best reply
to the others’ strategies?
If a player were to deviate, ending up in a different part of the game
tree, we need to know what happens there!
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Theorem (Equilibrium existence)

Every finite extensive form game with perfect recall has a Nash
equilibrium in mixed/behavioral strategies.

1 For mixed strategies: finite extensive form game gives finite
strategic game, which has a Nash equilibrium in mixed
strategies.

2 For behavioral strategies: by outcome-equivalence, we can
construct a Nash equilibrium in behavioral strategies.
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Strategic form analysis of extensive form games

The extensive form game

has corresponding strategic form
L R

A 0, 0 2, 1
B 1, 2 1, 2

Pure Nash equilibria: (B, L) and (A,R).
But if pl. 2 is called upon to play, would 2 choose L? This is an
implausible choice in the ‘subgame’ that starts at node A!
To rule out such implausible equilibria, require that an equilibrium
is played in each subgame: ‘subgame perfect equilibrium’
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Subgame perfect equilibrium

In an extensive form game with perfect information, let x be a
node of the tree that is not an end node. The part of the
game tree consisting of all nodes that can be reached from x
is called a subgame.

Each game is a subgame of itself. A subgame on a strictly
smaller set of nodes is called a proper subgame.

A subgame perfect equilibrium is a strategy profile that
induces a Nash equilibrium in each subgame.

In the game on the previous slide, only (A,R) is subgame perfect.
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Subgame perfect equilibria via backward induction

Subgame perfect equilibria are typically found by backward induc-
tion:

1 Start with subgames with only one decision left. Determine
the optimal actions there.

2 Next, look at subgames with at most two consecutive
decisions left. Conditioning on the previous step, the first
player to choose (say i) knows what a ‘rational’ player will do
in the subgame that starts after i ’s choice, so it is easy to find
i ’s optimal action.

3 Continue with subgames of at most 3 consecutive moves, etc.

This is the game-theoretic generalization of the dynamic program-
ming algorithm in optimization theory.
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Backward induction: example 1

Strategic form:
C D

AE 1, 3 1, 3
AF 1, 3 1, 3
BE 2, 1 0, 2
BF 2, 1 1, 0

Pure Nash equilibria: (AE ,D), (AF ,D), and (BF ,C ).
Subgame perfect equilibrium: (BF ,C )
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Backward induction: example 2

Dividing 2 indivisible objects. Pl. 1 proposes, pl. 2 accepts or
rejects.

How many pure strategies for player 1? 3
How many pure strategies for player 2? 23 = 8
Subgame perfect equilibria? ((2, 0), yyy) and ((1, 1), nyy)
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Backward induction: example 3 (the ‘rotten kid’ game)

A child’s action a from some nonempty, finite set A affect
both her own payoff c(a) and her parents’ payoff p(a); for all
a ∈ A we have 0 ≤ c(a) < p(a).

The child is selfish: she cares only about the amount of
money she receives.

Her loving parents care both about how much money they
have and how much their child has. Specifically, model the
parents as a single player whose utility is the smaller of the
amount of money the parents have and the amount the child
has. The parents may transfer money to the child (pocket
money, trust fund, etc).

First the child chooses action a ∈ A.

Then the parents observe the action and decide how much
money x ∈ [0, p(a)] to transfer to the child. The game ends
with utility c(a) + x for the child and min{c(a) + x , p(a)− x}
to the parents.
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Show: in a subgame perfect equilibrium, the child takes an action
that maximizes the sum of her private income c(a) and her parents’
income p(a). Not so selfish after all!

In the subgame after action a ∈ A, the parents maximize
min{c(a) + x , p(a)− x} over x ∈ [0, p(a)].

This is done by choosing x such that c(a) + x = p(a)− x ,
i.e., by x∗(a) = 1

2(p(a)− c(a)).

Anticipating this, the child knows that action a ∈ A leads to
transfer x∗(a) and consequently utility
c(a) + x∗(a) = 1

2(c(a) + p(a)). Maximizing this expression is
equivalent with maximizing c(a) + p(a).
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Finite trees: existence of subgame perfect equilibria

Using backward induction, if there are only finitely many nodes, the
first player to move — conditioning on the optimal behavior in the
smaller subgames — is optimizing over a finite set: an optimum will
always exist. Using this and induction on the ‘depth’ of the tree,
one can show:

Theorem (Existence of subgame perfect equilibria)

In a finite extensive form game with perfect information, there is
always a subgame perfect equilibrium in pure strategies.

That’s a pretty nice result:

1 no need to consider randomization

2 no implausible behavior in subgames

As an aside: what if there are infinitely many nodes?
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Subgame perfection and backward induction coincide

Theorem

In a finite extensive form game with perfect information, subgame
perfect equilibria and those found by backward induction are
identical.

Difficult! Main step is the ‘one-deviation property’: a strategy profile
is subgame perfect if and only if for each subgame the first player to
move cannot obtain a better outcome by changing only the initial
action.
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Centipede games

Although subgame perfect equilibria were introduced to rule out
implausible behavior in subgames, there are examples where such
equilibria lead to outcomes that some people find counterintuitive.
This is sometimes corroborated with experimental support. One
well-known example consists of Rosenthal’s centipede games, char-
acterized by the following properties:

Players 1 and 2 take turns during at most 2T rounds (T ∈ N).

At each decision node, the player can choose to (S)top or
(C)ontinue.

The game ends (i) if one of the players decides to stop, or (ii)
if no player has chosen stop after 2T periods.

For each player, the outcome when he stops the game in
period t is:

better than the outcome if the other player stops in period
t + 1 (or the game ends),
worse than any outcome that is reached if in period t + 1 the
other player continues.
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Centipede games

Here is an example of a centipede game with 6 periods:

It is tempting to continue the game if you can be sure that the other
player does so as well: the longer the game goes on, the higher the
payoffs.
But in the unique subgame perfect equilibrium, players choose (S)top
in each node. In particular, the game ends immediately in the initial
node.
Reason: in the final node, player 2’s best reply is to (S)top. Given
that 2 (S)tops in the final round, 1’s best reply is to stop one period
earlier, etc.
There are other Nash equilibria, but they all lead to the same out-
come: player 1 ends the game immediately.
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Subgame perfect equilibrium in games with imperfect
information

Subgame perfect equilibria in games with perfect information
require each player to play a best reply to other players’
strategies in each subgame — regardless of whether that
subgame is reached or not.
It is possible to extend the notion of subgame perfect
equilibria to games with imperfect information. But the
definition of subgames is trickier: information sets must lie
entirely outside the subgame or entirely inside the subgame.
Formally, let x be a (non-end) node and let V x be the nodes
of the tree that can be reached from x . A well-defined
subgame starts at x if and only if each information set h of
the original game is a subset of V x or is a subset of its
complement.
Since extensive form games with imperfect information need
not have proper subgames, the notion of subgame perfection
typically has little ‘bite’.
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Homework exercise 2

In the game of homework exercise 1:

(a) Find the corresponding strategic game.

(b) Find all pure-strategy Nash equilibria.

(c) What is the outcome of iterated elimination of weakly
dominated (pure) strategies?

(d) Find all subgame perfect equilibria (in behavioral strategies).
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Question: Can we find a suitable equilibrium refinement for imper-
fect information games that

1 makes sense even if there are no subgames and

2 still insists that players choose ‘rationally’ even in information
sets that are reached with zero probability?

First attempt: require best responses in each information set.
Problem: the best response depends on where in the information
set the player believes to be!
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Beliefs and optimal strategies affecting each other

The following game has no proper subgames:

Beliefs affect optimal strategies: consider pl 2 in info set {M,R}. A
is a best response if and only if the player assigns at most prob 1/2
to being in node M.
Strategies affect reasonable beliefs: If pl 1 assigns to actions (L,M,R)
probabilities

(
1
10 ,

3
10 ,

6
10

)
, pl 2 is twice as likely to end up in node

R than in node M. Bayes’ law requires that he assigns conditional
prob 1/3 to M and 2/3 to R.
Question: What are reasonable beliefs if 1 chooses L with prob 1?
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Assessments

We consider two requirements on beliefs that give different answers
to the final question:

1 Bayesian consistency: in information sets that are reached
with positive probability, beliefs are determined by Bayes’ law.
In information sets reached with zero probability, beliefs are
allowed to be arbitrary.

2 Consistency: beliefs are determined as a limit of cases where
everything happens with positive probability and —
consequently — where Bayes’ law can be used.

In particular, in both of these notions, we need to define two things:
strategies and beliefs over the nodes in the information sets. The
difference will lie in the constraints that are imposed.
Formally, consider a finite extensive form game with perfect recall.
An assessment is a pair (b, β), where

b = (bi )i∈N is a profile of behavioral strategies and
β is a belief system, assigning to each information set h a
probability distribution βh over its nodes.
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Two belief requirements

Given node x and behavioral strategies b, let Pb(x) be the probability
that node x is reached using b: it is the product of the probabilities
assigned to the branches leading to x . Similarly, if h is an information
set, it is reached with probability Pb(h) =

∑
x∈h Pb(x).

Assessment (b, β) is:

Bayesian consistent if beliefs in information sets reached with
positive probability are determined by Bayes’ law:

βh(x) = Pb(x)/Pb(h)

for every info set h with Pb(h) > 0 and every node x ∈ h.

consistent if there is a sequence of Bayesian consistent
assessments (bm, βm)m∈N with each bm completely mixed (all
actions in all info sets have positive prob) and
limm→∞(bm, βm) = (b, β).

Note: (b, β) consistent ⇒ (b, β) Bayesian consistent.
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(Bayesian) consistency: example

In the game above, where payoffs are omitted since they are irrele-
vant to the question:

(a) Find all Bayesian consistent assessments (b, β).

(b) Find all consistent assessments (b, β).
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Summarize an assessment (b, β) by a 4-tuple (p, q, α1, α2) ∈ [0, 1]4,
where

p is the probability that 1 chooses In,

q is the probability that 2 chooses In,

α1 is the probability that the belief system assigns to the left
node in 1’s info set,

α2 is the probability that the belief system assigns to the left
node in 2’s info set.

(a) Distinguish two cases:
1 If p ∈ (0, 1], 2’s information set is reached with positive

probability. In that case, Bayes’ Law dictates that
α1 = α2 = 1

2 . Conclude: all
(p, q, α1, α2) ∈ (0, 1]× [0, 1]×

{
1
2

}
×
{

1
2

}
are Bayesian

consistent.
2 If p = 0, 2’s information set is reached with zero probability

and 2 is allowed any belief α2 ∈ [0, 1] over the nodes in the
information set. Bayes’ Law only dictates that α1 = 1

2 .
Conclude: all (p, q, α1, α2) ∈ {0} × [0, 1]×

{
1
2

}
× [0, 1] are

Bayesian consistent.
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(b) Every completely mixed profile of behavioral strategies leads
to α1 = α2 = 1

2 .
Indeed, in 2’s information set, both nodes are reached with
equal probability 1

2p.
Conclude: consistent are all
(p, q, α1, α2) ∈ [0, 1]× [0, 1]×

{
1
2

}
×
{
1
2

}
.
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Reading guide

1 Nash equilibrium: slides 1–4, book 47–48, 202–203

2 Subgame perfect equilibrium and backward induction: slides
5–16, book §4.3, 204

3 Assessments: consistency of beliefs: slides 18–24 , book §4.4
(partly), §14.3.2 (204–206)
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