
Short solutions problem set 3; Mark Voorneveld and Jörgen Weibull

Exercise 1:

(a) (m1, w3), (m2, w1), (m3, w2), and w4, w5 remain single.

(b) (m1, w3), (m2, w2), (m3, w1), and w4, w5 remain single.

(c) No. In any stable matching, w4, w5 remain single (rural hospital theorem), m1 must match to
w3 (he does so both in the best and the worst match for men), leaving only the two matchings
above.

Exercise 2:

(a) One iteration ends with stable match (m1, w1), (m2, w2).

(b) One iteration ends with stable match (m1, w2), (m2, w1).

(c) Letting X denote an unacceptable candidate, the ranking matrix with w1’s stated preference is

w1 w2

m1 1,X 2,1
m2 2,1 1,2

If men propose, the stable match is (m1, w2), (m2, w1). Looking at the original preferences, we
see that both women get the man they like most. Under (a), they got the man they liked least.

Exercise 3: Following the hints in the exercise, consider the matching problem of exercise 2.
Since the two men and the two women find all partners of the opposite sex acceptable, there are

two possible stable matchings: {(m1, w1), (m2, w2)} and {(m1, w2), (m2, w1)}. Both were shown to be
stable above.

So if a rule always picks a stable matching, it must pick one of those two in the matching problem
of exercise 2. If it picks the former, let w1 lie as in exercise 2(c). That problem has only one stable
matching, {(m1, w2), (m2, w1)}. It is stable because it is the outcome of the DA algorithm; it is the only
one since both men and women must be matched by the rural hospital theorem and w1 only finds m2

acceptable, leaving only one candidate! But this matching is better for w1: w1 has an incentive to lie
about her preferences.

Analogously, if our rule were to pick the second matching, man m1 could lie about his preferences
and state that he only finds w1 acceptable.

Exercise 4: Iteration 1 yields cycle (2,h5,5,h2,2); iteration 2 yields cycles (1,h1,1) and (4,h3,3,h4,4).
The resulting match is (1,h1), (2,h5), (3,h4), (4,h3), (5,h2).
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Solution to Jörgen’s exercise on repeated games:

(a) Each individual’s utility function is continuous and strictly concave in the individual’s own ef-
fort. Hence, each player has at most one best reply to each strategy profile. The partial derivative
of ui (x1, . . . , xn) with respect to xi is g ′(x1 +·· ·+ xn)/n − xi , so i ’s unique best reply must satisfy
the first-order condition xi = g ′(x1 +·· ·+xn)/n. Since this is the same equation for all partners,
they will necessarily choose the same effort x∗ in any Nash equilibrium.

This effort satisfies nx∗ = g ′(nx∗). This equation has a unique solution: its left- and righthand
side are continuous functions, the left is increasing, the right nonincreasing, so we find a unique
intersection using the intermediate value theorem.

Aggregate effort y∗ = nx∗ satisfies y∗ = g ′(y∗). Thus, aggregate effort y∗ is independent of n
and x∗ = y∗/n is decreasing in n.

(b) If all partners exert the same effort x, then the sum of their utilities is g (nx)−nx2/2. This is
maximized iff x satisfies g ′(nx) = x. As in (a), this equation has a unique solution x̂. Comparing
the condition nx∗ = g ′(nx∗) in (a) with the condition x̂ = g ′(nx̂) in (b), it follows that x̂ > x∗ for
all n > 1.

In (a), each partner has payoff g (nx∗)/n − (x∗)2/2. Since x̂ maximizes x 7→ g (nx)/n − x2/2, it
follows that the partners are better off when they exert effort x̂ for any n > 1.

(c) Let û (u∗) be a partner’s period utility when they all play x̂ (x∗). Then û > u∗. Let u+ be the
maximal utility a partner i can obtain from unilaterally deviating when all others play x̂. Then
u+ = maxxi ui (xi , x̂−i ) and u+ > û. (The inequality is strict since it is not a NE for all to play x̂
when n > 1) A strategy profile is a SPE iff there exists no profitable one-shot deviation. Evidently
there exists no such deviation after any history in which some player has deviated. Hence, it
suffices to study deviation incentives from the strategy path.

Following the strategies gives sequence of utilities (û, û, . . .) with discounted utility û. A one-shot
deviation gives u+ now, followed by a constant sequence of Nash equilibrium payoffs u∗ and
this sequence (u+,u∗,u∗, . . .) has discounted utility (1−δ)u++δu∗. So there exists no profitable
one-shot deviation from that path iff û ≥ (1−δ)u++δu∗.

(d) In (a), nx∗ = g ′(nx∗) becomes x∗ = 1/n with aggregate effort y∗ = 1; in (b), x̂ = g ′(nx̂) becomes
x̂ = 1 with aggregate effort ŷ = n; in (c), û = 1/2,u∗ = (2n−1)/2n2,u+ = (2n2−2n+1)/2n2, so the
inequality for non-existence of a profitable one-shot deviation becomes δ≥ 1/2.

(e) The minmax strategy against the other player is xi = 0 and the other player’s best reply to that is
to choose effort 1/2. Hence, each player’s minimax level is v0 = 1/8. Mutual minmaxing (i.e.,
both players choose effort 0) results in utility zero to both partners. By contrast, for n = 2,
û = 1/2 and u+ = 5/8. Consider the mutual minmax strategy pair described in the proof of
the Fudenberg-Maskin Folk theorem, with duration L periods. By the one-shot deviation prin-
ciple, we need only consider one-shot deviations from the path of the strategy profile and from
the first period in a punishment phase. The associated conditions for no profitable one-shot
deviation are:

û ≥ (1−δ)u++ (1−δ)(δ+δ2 +·· ·+δL)0+δL+1û,

(1−δ)(1+δ+·· ·+δL−1)0+δLû ≥ (1−δ)v0 + (1−δ)(δ+δ2 +·· ·+δL)0+δL+1û,

or, simplified:

(1−δL+1)û ≥ (1−δ)u+,

δLû ≥ v0.
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Substituting û = 1
2 ,u+ = 5

8 , v0 = 1
8 , our question becomes for which δ ∈ (0,1) can we find a suit-

able length L ∈N of the punishment phase such that

1−δL+1

1−δ ≥ 5

4
,

δL ≥ 1

4
.

The second inequality implies that δ must be at least 1/4. To see that this condition is not only
necessary, but also sufficient, note for L = 1, both inequalities simplify to δ≥ 1/4.

Conclude: there is a sufficiently long punishment phase if and only if δ≥ 1/4.
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