SF2972 GAME THEORY Problem set 3

MARK VOORNEVELD February 6, 2017

Do homework exercises 1 to 4 in the lecture slides on matching, plus the following:

A PARTNERSHIP GAME: There are $n \geq 1$ partners who together own a firm. Each partner *i* chooses an effort level $x_i \geq 0$, resulting in total profit g(y) for their firm, where $y = x_1 + \cdots + x_n$ is their aggregate effort. The profit function $g: \mathbb{R}_+ \to \mathbb{R}_+$ is continuous with g(0) = 0, and it is twice differentiable on \mathbb{R}_{++} with g' > 0, and $g'' \leq 0$. The firm's profit is shared equally by the partners, and each partner's effort gives him or her (quadratic) disutility. The resulting utility level for each partner *i* is

$$u_i(x_1, \dots, x_n) = \frac{1}{n} \cdot g(x_1 + \dots + x_n) - x_i^2/2$$

where (x_1, \ldots, x_n) is the effort profile.

- (a) Suppose each partner *i* has to decide his or her effort x_i without observing the others' efforts. Show that the game has exactly one Nash equilibrium, and show that all partners make the same effort, x^* , in equilibrium. Is the individual equilibrium effort x^* increasing or decreasing in *n*, or is it independent of *n*? Is the aggregate equilibrium effort, $y^* = nx^*$, increasing or decreasing in *n*, or is it independent of *n*?
- (b) Suppose that the partners can pre-commit to a common effort level, $x \ge 0$, the same for all. Let \hat{x} be the common effort level that maximizes the sum of the partners' utilities. Characterize \hat{x} in terms of an equation, and compare this level with the equilibrium effort x^* in (a), for n = 1, 2, ... Are the partners better off now than in the equilibrium in (a)? How does this depend on n? Explain!
- (c) Suppose that the interaction in (a) takes place every day, t = 0, 1, 2, ...and suppose that all partners each day $t \ge 1$ can observe all partners' previous efforts. Moreover, assume that each partner strives to maximize the present value of her stream of daily utilities, discounted by the same factor $\delta \in (0, 1)$. The resulting utility level for each partner *i* is $(1 - \delta) \cdot \sum_{t=0}^{\infty} \delta^t u_i (x_1(t), \ldots, x_n(t))$. For what range of discount factors $\delta \in (0, 1)$, if any, is it possible to induce, in subgame perfect equilibrium, each partner to each day exert the socially optimal effort level, \hat{x} (see (b)), under the "threat" to punish any deviations by play forever of the daily Nash equilibrium in (a)? Write up the condition on δ as an inequality, and motivate it carefully and explain it!

- (d) Now consider the special case of a linear profit function, $g(y) \equiv y$. Find explicit solutions for (a)-(c) and discuss how and why these solutions depend on $n \geq 1$, the number of partners in the firm.
- (e) For the special case of a linear profit function, $g(y) \equiv y$, and with n = 2: For what range of discount factors $\delta \in (0, 1)$ is it possible to induce, in subgame perfect equilibrium, each partner to each day exert the socially optimal effort level, \hat{x} (see (b)), under the threat of (pure-strategy) mutual minmaxing, as in the Fudenberg-Maskin folk theorem for two-player games? Define precisely the behavior strategies that support such outcomes in this game. Compare the range of discount factor with that in (c) (for the linear profit function and n = 2).