Repeated games

Jörgen Weibull

February 2017
1 Introduction

Q1: Can repetition enable "better" outcomes than "static" equilibrium?

- Peace instead of war?
- Resolution of the tragedy of the commons?
- Collusion in oligopolistic markets?
- Keeping together criminal gangs?

Q2: Can repetition enable "worse" outcomes than "static" equilibrium?

- Better for one party but worse for another? Worse for all parties?
Key concepts

Threats and promises

Punishments and rewards

Credibility

• Credible threats "cost nothing" but "credible promises" may be costly!
Example 1.1 Consider a repeated prisoners’ dilemma protocol (in monetary gains):

\[
\begin{array}{cc}
& c & d \\
\hline
\text{c} & 3,3 & 0,4 \\
\text{d} & 4,0 & 1,1 \\
\end{array}
\]

(a) Suppose this is played \(T = 100 \) times, each time as a simultaneous-move game, under perfect monitoring (of past moves), and that each player evaluates plays in terms of the sum of own monetary gains:

\[
\Pi_i = \sum_{t=1}^{T} \pi_i(a(t)) \quad i = 1, 2
\]

where \(a(t) \in \{c, d\}^2 \forall t \). If \(T = 100 \), how would you play? What does the extensive form look like? What is a strategy? Subgame? Find all SPE! Is cooperation possible in SPE?
(b) Suppose everything is as in (a), except that now T is a geometrically distributed random variable. After each round, the game continues with probability $\delta \in (0, 1)$ to the next round, with statistically independent draws each time. Then

$$
\Pr [T = 1] = 1 - \delta, \quad \Pr [T = 2] = \delta (1 - \delta), \quad \Pr [T = 3] = \delta^2 (1 - \delta), \ldots
$$

(c) Suppose everything is as in (b), except that the random variable T has a probability distribution with finite support, say $\Pr[T \leq 10^9] = 1$.

(d) Suppose everything as in (a),(b) or (c), except that now monitoring is imperfect. Two main cases: public monitoring (both players observe the same noisy signal about last round's play), private monitoring (each player observes a private noisy signal about last round’s play)
Example 1.2 Finitely repeated play of a coordination game with an added strictly dominated strategy:

\[
\begin{array}{ccc}
\text{a} & \text{b} & \text{c} \\
\text{a} & 3,3 & 0,0 & 8,0 \\
\text{b} & 0,0 & 1,1 & 0,0 \\
\text{c} & 0,8 & 0,0 & 7,7 \\
\end{array}
\]

Suppose each player adds up his or her period payoffs. Assume perfect monitoring.

Repeated play of \((b, b)\) gives payoff 1 to each player in each round. Can this be obtained in SPE?

Repeated play of \((a, a)\) gives payoff 3 to each player in each round. Can this be obtained in SPE?

Is it possible, in SPE, to obtain higher payoffs than \(3T\) for each player?
2 Infinitely repeated games with discounting

• Simultaneous-move stage game $G = \langle N, A, \pi \rangle$, for

$$N = \{1, \ldots, n\} \quad A = \times_{i=1}^{n} A_i \quad \pi : A \rightarrow \mathbb{R}^n$$

with each A_i is finite (or, more generally, compact)

• Terminology: $a_i \in A_i$ “actions”

• Time periods $t = 0, 1, 2, \ldots$

• Perfect monitoring: all actions observed after each period

• Write $\alpha_i \in \Delta (A_i)$ if α_i is a randomized action choice, a "mixed action", by player i

• Write \mathbb{N} for the non-negative integers (that is, including zero)
1. **Histories** $H = \bigcup_{t \in \mathbb{N}} H_t$

 In the initial period $t = 0$: $H_0 = \{h_0\}$ (h_0 is the “null history”)

 In any period $t > 0$: $h = \langle h_0, a(0), a(1), ..., a(t - 1) \rangle \in H_t = H_0 \times A^t$

2. **Plays**: infinite sequences of action profiles

 $$\tau = \langle a(0), a(1), ..., a(t), ... \rangle \in A^\infty$$

3. **Behavior strategies** $y_i : H \to \Delta(A_i)$

 (a) For any history $h \in H$: $y_i(h) = \alpha_i \in \Delta(A_i)$ is i’s (local) randomization, in the next period, over his or her action set

 (b) Y_i denote the set of behavior strategies for player i, and let $Y = \times_{i \in \mathbb{N}} Y_i$
4. Each behavior-strategy profile \(y \in Y \), when used, recursively defines a play \(\tau \in A^\infty \):

(a) \(a(0) \in A \) is the realization of \(y(h_0) \in \square(A) \)

(b) \(a(1) \in A \) is the realization of \(y(h_0, a(0)) \in \square(A) \)

(c) \(a(2) \in A \) is the realization of \(y(h_0, a(0), a(1)) \in \square(A) \) etc.

5. Each player’s preferences over plays is assumed to be representable by the Bernoulli function

\[
v_i(\tau) = (1 - \delta) \sum_{t=0}^{\infty} \delta^t \pi_i[\alpha(t)]
\]

for some common discount factor \(\delta \in (0, 1) \)

This is the normalized present value of the stream of stage-game payoffs.
6. Payoff functions \(u_i : Y \rightarrow \mathbb{R} \) are defined as the *normalized expected present value* of the payoff stream:

\[
u_i(y) = (1 - \delta) \cdot \mathbb{E}_y \left[\sum_{t=0}^{\infty} \delta^t \pi_i [a(t)] \right]
\]

This defines an *infinitely repeated game with discounting*, \(\Gamma^\delta \)

Remark: The assumption that preferences over plays take this simple additive form (over one’s own per-period payoffs) is a very strong assumption
3 Solution concepts

Definition 3.1 A behavior-strategy profile y^* is a NE of Γ^δ if

$$u_i(y^*) \geq u_i(y_i, y_{-i}^*) \quad \forall i \in N, y_i \in Y_i$$

- Just as in the case of finite extensive-form games, a behavior-strategy profile is a NE if and only if it is sequentially rational on its own path.

- **Continuation strategies**: given any history $h \in H$, the restriction of a behavior-strategy profile y to the subset of histories that begin with h:

 $$y|_h = (y_1|_h, \ldots, y_n|_h)$$
Recall that under perfect monitoring every history is the root of a subgame

Definition 3.2 A behavior-strategy profile \(y^* \) is a SPE of \(\Gamma^\delta \) if

\[
u_i \left(y^*_h \right) \geq u_i \left(y_i|h, y^*_{-i|h} \right) \quad \forall i \in N, y_i \in Y_i, h \in H
\]

Remark 3.1 Unconditional play of any NE of the stage game \(G \) in each period, can be supported in SPE in \(\Gamma^\delta \), for any \(\delta \) and for any time horizon \(T \leq +\infty \)

Remark 3.2 Unconditional play of any given sequence of NE of the stage game \(G \) can also be supported in SPE
4 The one-shot deviation principle

In dynamic programming: this principle is called unimprovability.

Definition 4.1 A one-shot deviation from a strategy $y_i \in Y_i$ is a strategy $y'_i \neq y_i$ that agrees with y_i at all histories but one: $\exists! \ h^* \in H$ such that

$$y'_i(h) = y_i(h) \quad \forall h \neq h^*$$

Such a deviation from a strategy profile $y \in Y$ is profitable if

$$u_i|_{h^*} \left(y'_i, y_{-i} \right) > u_i|_{h^*}(y)$$
• Nash equilibria have no profitable one-shot deviations on their paths, but may have profitable one-shot deviations off their paths.

• But not so for subgame perfect equilibria:

Proposition 4.1 (One-shot deviation principle) A strategy profile \(y \) is a SPE of \(\Gamma^\delta \) if and only if \(\forall \) profitable one-shot deviation.

Proof sketch:

1. SPE \(\Rightarrow \) no profitable one-shot deviation

2. not SPE \(\Rightarrow \exists \) profitable one-shot deviation by “payoff continuity at infinity” (in class)
Example 4.1 Reconsider the Prisoners’ dilemma and use the one-shot deviation principle to test well-known strategy profiles for SPE, given some $\delta \in (0, 1)$: grim trigger, tit-for-tat, all D etc.
5 Folk theorems

Q: In infinitely repeated games with discounting and perfect monitoring, what payoff vectors (normalized expected present value of stream of stage-game payoffs) can be supported in SPE?

A: For sufficiently patient players (high \(\delta < 1 \)): any feasible and individually rational payoff vector in the stage game

- Why called "folk theorems"?

- Early versions: NE instead of SPE, limit average payoffs (no discounting) instead of present values under discounting
5.1 The Nash-threat folk theorem

- Suppose that each action set A_i be compact (not necessarily finite), write $A = \times_{i \in N} A_i$ and let each stage-game payoff function $\pi_i : A \to \mathbb{R}$ be continuous.

- Then any payoff vector in the stage game that strictly Pareto dominates some stage-game NE can be supported in SPE if the players are sufficiently patient:

Theorem 5.1 (Friedman, 1971) Assume that $\nu = \pi (\hat{a}) > \pi (a^*)$ for some $\hat{a} \in A$ and some NE $a^* \in A$ in G. There exists a $\tilde{\delta} \in (0,1)$ such that ν is a SPE payoff outcome in Γ^δ, for every $\delta \in [\tilde{\delta}, 1)$.

Proof: Let $y \in Y$ in Γ^δ be defined by $y(h_0) = \hat{a} \in A$, $y(h) = \hat{a}$ for all $h \in H$ in which all players took actions \hat{a} in all preceding periods. For other $h \in H$: $y(h) = a^*$.
1. **On the path of \(y \):** No profitable one-shot deviation for player \(i \) iff

\[
(1 - \delta) \cdot M_i + \delta \cdot \pi_i (a^*) \leq \pi_i (\hat{a})
\]

(1)

where \(M_i = \max_{a_i \in A_i} \pi_i (a_i, \hat{a}_{-i}) \) (and note that \(M_i \geq \pi_i (\hat{a}) > \pi_i (a^*) \))

(a) Inequality (1) holds iff

\[
\delta \geq \delta_i = \frac{M_i - \pi_i (\hat{a})}{M_i - \pi_i (a^*)}
\]

(b) Let \(\bar{\delta} = \max_{i \in N} \delta_i \). Then \(\bar{\delta} < 1 \).

2. **Off the path of \(y \):** the stage-game NE \(a^* \) is prescribed in each period after any such history \(h \), so there is no profitable one-shot deviation
5.2 Example: Cournot duopoly

• Two identical firms, producing the same good, for which the demand function is

\[D(p) = 100 - p \]

in each time period \(t = 1, 2, \ldots \)

• No fixed costs and a constant marginal production cost of \(c \geq 0 \) per unit

• Each firm \(i \) independently decides on its output, \(q_i(t) \), in each period \(t = 0, 1, 2, \ldots \)

• The resulting market price in period \(t \):

\[p(t) = 100 - [q_1(t) + q_2(t)] \]
• Profits in period t:

$$\pi_i [q(t)] = (100 - [q_1(t) + q_2(t)] - c) \cdot q_i(t)$$

• Perfect monitoring: past outputs are observed (or, equivalently, past prices are observed)

• The stage game G has a unique NE:

$$q_1 = q_2 = q^* = \frac{100 - c}{3}$$

• Let $Q^* = 2q^*$. This industry output exceeds monopoly industry output \hat{Q}:

$$\hat{Q} = \frac{1}{2}(100 - c) < \frac{2}{3}(100 - c) = Q^*$$
• Equilibrium industry profit fall short of monopoly industry profit:

\[\Pi^* = 2 \left(\frac{100 - c}{3} \right)^2 < \left(\frac{100 - c}{2} \right)^2 = \widehat{\Pi} \]

• Note that the sum of profits is a function of the sum of outputs:

\[\pi_1 + \pi_2 = (100 - (q_1 + q_2) - c) \cdot (q_1 + q_2) \]
• Suppose infinitely repeated with discount factor δ (for example $\delta = e^{-r\Delta}$ where r is the interest rate and Δ the period length)

• Consider the following pure (behavior) strategy, s_i^*: start out with some quantity $\hat{q}_i \in (0, 100)$, and supply this output in all future periods, as long as no deviation from these output levels, $\hat{q} = (\hat{q}_1, \hat{q}_2)$ has been observed. If a deviation occurs: play the static Cournot equilibrium, q^*, in all future periods.

• No profitable one-shot deviations in any history containing a deviation from \hat{q}. The strategy pair (s_1^*, s_2^*) is thus a SPE iff

$$\pi_i (\hat{q}) \geq (1 - \delta) \cdot \max_{q_i \in [0, 100]} \pi_i (q_i, \hat{q}_{-i}) + \delta \cdot \pi_i (q^*) \quad \text{for } i = 1, 2$$
• Possible to support also other outcomes in SPE? Lower than static Cournot profits for one firm, or even for both firms?
6 General folk theorems

Definition 6.1 An action profile $a = (a_1, \ldots, a_n) \in A$ is a minmax action-profile against player i if

$$a_{-i} \in A_{-i}^0 = \arg \min_{a_{-i}} \left(\max_{a_i} \pi_i (a_i, a_{-i}) \right)$$

- It is as if the others gang up to jointly punish i and i, knowing their punishment (a_{-i}) defends her/himself as best she/he can.

Definition 6.2 Player i’s minmax value:

$$v_i^0 = \min_{a_{-i}} \left(\max_{a_i} \pi_i (a_i, a_{-i}) \right)$$

Definition 6.3 A payoff vector $v \in \mathbb{R}^n$ is strictly individually rational if $v > v^0$.
• In some games the resulting minmax value can be (much) lower if the punishers use mixed strategies

• Reconsider the Prisoner’s dilemma, the matching-pennies game, a 2x2 coordination game

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3,3</td>
<td>1,4</td>
</tr>
<tr>
<td>D</td>
<td>4,1</td>
<td>2,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1,−1</td>
<td>−1,1</td>
</tr>
<tr>
<td>T</td>
<td>−1,1</td>
<td>1,−1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,2</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

• What are the minmax vectors under pure/mixed minmaxing?
Definition 6.4 The set of feasible payoff vectors in the stage game G is the convex hull of the direct payoff image of the action space:

$$V = co [\pi (A)] \subset \mathbb{R}^n$$

- Why is convexification natural?

Definition 6.5 The set of feasible and strictly individually rational payoff vectors in the stage game G:

$$V^* = \{ v \in V : v > v^0 \}$$

- Reconsider the above examples!
6.1 Two-player games

- Assume \(n = 2, \ A = A_1 \times A_2 \) compact and \(\pi : A \to \mathbb{R}^2 \) continuous

Definition 6.6 A mutual minmax profile in \(G \) is an action profile \((a_1^0, a_2^0) \in A \) such that \(a_1^0 \in A_1 \) is a minmax action against 2 and \(a_2^0 \in A_2 \) a minmax action against 1.

- Note that \(\pi (a_1^0, a_2^0) \leq v^0 \) (since a player’s minmax action is not necessarily a best-reply to the other’s minmax action)
Main result: Any payoff vector in the stage game that strictly Pareto dominates the minmax payoff vector can be supported in SPE if the players are sufficiently patient. Proof: Threat of temporary mutual minmaxing.

Theorem 6.1 (Fudenberg and Maskin, 1986) Let $n = 2$, and suppose $\hat{a} \in A$ is such that $\pi(\hat{a}) > v^0$. There exists a $\bar{\delta} \in (0, 1)$ such that play of $\hat{a} \in A$ in each period is supported by a SPE in Γ^δ, for any $\delta \in [\bar{\delta}, 1)$.
Proof sketch:

Given \(\hat{a} \in A \) such that \(\pi(\hat{a}) > v^0 \), consider a behavior-strategy profile \(y = (y_1, y_2) \) in the repeated game, with "penalty duration" \(L \):

1. Start by playing \(\hat{a} = (\hat{a}_1, \hat{a}_2) \), and play \(\hat{a} \) if \(\hat{a} \) was always played so far.

2. Also play \(\hat{a} \) if sometime in the past the mutual minmax profile \(a^0 \) was played for \(L \) consecutive periods after which no other action pair than \(\hat{a} \) was ever played.

3. For all other histories: play \(a^0 \)
• L has to be long enough to deter deviations in phases 1 and 2, but short enough to deter deviation in phase 3. Such an L always exists!

• Use the one-shot deviation principle!

 – One-shot deviations in phases 1&2 unprofitable iff
 \[
 \max_{a_i \in A_i} \pi_i (a_i, \hat{a}_-i) - \pi_i (\hat{a}) < \left(\delta + \delta^2 + \ldots + \delta^L \right) \left[\pi_i (\hat{a}) - \pi_i (a^0) \right]
 \]

 – One-shot deviations in phase 3 unprofitable iff
 \[
 v^0_i - \pi_i (a^0) \leq \delta^L \cdot \left[\pi_i (\hat{a}) - \pi_i (a^0) \right]
 \]

• Draw picture in class
• Can this theorem explain why two rational persons stand in a street beating each other with a stick?

• Reconsider the Cournot duopoly example!
6.2 Games with more than two players

- For $n > 2$ there may exist no mutual minmax action-profile:

\[
\begin{array}{c|cc}
L & R & \\
\hline
U & 1,1,1 & 0,0,0 \\
D & 0,0,0 & 0,0,0 \\
\end{array}
\quad
\begin{array}{c|cc}
L & R & \\
\hline
U & 0,0,0 & 0,0,0 \\
D & 0,0,0 & 1,1,1 \\
\end{array}
\]

- A player can unilaterally deviate from minmaxing of another player, and obtain a payoff 1, instead of the minmax value 0.

- The proof for $n = 2$ cannot be generalized. Not only that, the claim is not valid for generally valid for $n > 2$!

Definition 6.7 Two players in G, say i and j, have **equivalent** payoff functions if $\pi_j = \alpha \pi_i + \beta$ for some $\alpha > 0$ and $\beta \in \mathbb{R}$.
• The so-called NEU condition, or Non-Equivalent-Utilities condition: no pair of players have equivalent payoffs functions

• Assume that $A = \times_{i=1}^{n} A_i$ is compact and $\pi : A \to \mathbb{R}^n$ is continuous

Theorem 6.2 (Abreu, Dutta and Smith, 1994) Assume G satisfies NEU. Suppose $\hat{a} \in A$ is such that $\pi(\hat{a}) > v^0$. Then there exists a $\bar{\delta} \in (0, 1)$ such that play of $\hat{a} \in A$ in each period is supported by a SPE in Γ^δ, for every $\delta \in [\bar{\delta}, 1)$.

• See Abreu, Dutta and Smith (1994) and/or Mailath & Samuelson (2006)
7 Concluding comment

• Note the *neutrality* of the folk theorems: they do *not* say that repetition will necessarily lead to cooperation, only that it *enables* cooperation *if* players are sufficiently patient.

• Interesting implications of the folk theorem also for "bad" outcomes.