

SF2972 Game Theory Exam March 15, 2013

Time: 8.00-13.00 No permitted aids Examiner: Boualem Djehiche

The exam is divided in two: Part A on classical game theory and Part B on combinatorial game theory. The maximal score is 20 points from part A and 15 points from part B, and your grade is calculated as follows:

Minimal score:	17	18	21	24	27	30
Grade:	Fx	Е	D	С	В	Α

Write clearly and concisely, give precise definitions of game-theoretic concepts and precise statements of game-theoretic results that you refer to. Provide precise derivations and motivations for your answers.

PART A – CLASSICAL GAME THEORY Jörgen Weibull and Mark Voorneveld

- 1. (a) What are N, S and u in the definition of a *finite normal-form* (or, equivalently, strategic-form) game $G = \langle N, S, u \rangle$? What is the mixed-strategy extension, $\tilde{G} = \langle N, \boxdot (S), \tilde{u} \rangle$ of such a game G? [1 pt]
 - (b) In terms of the mixed-strategy extension G of an arbitrary finite game G: Give the definitions of a *strictly dominated* strategy, a *weakly dominated strategy*, a *Nash equilibrium*, and a *perfect equilibrium*. [2 pts]
 - (c) Consider the following finite two-player game G, representing price competition in a market where all consumers buy from the seller(s) with the lowest price. Both sellers have to simultaneously choose a price, p_1 and p_2 , where $p_i \in P =$ $\{0, 1, 2, 3, 4\}$. The profits to each seller are given in the payoff bi-matrix below, where seller 1 chooses row and seller 2 column. Find all *strictly dominated* pure strategies, all *weakly dominated* pure strategies, all pure-strategy *Nash equilibria*, and all pure-strategy *perfect equilibria*. [2 pts]

$p_1 \backslash p_2$	0	1	2	3	4
0	-5, -5	-10, 0	-10, 0	-10, 0	-10, 0
1	0, -10	0, 0		0, 0	0, 0
2	0, -10	0, 0	3,3	6, 0	6,0
3	0, -10	0, 0	0, 6	4, 4	8,0
4	0, -10	0, 0	0, 6	0,8	3,3

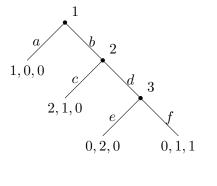
2. There are $n \ge 1$ partners who together own a firm. Each partner *i* chooses an effort level $x_i \ge 0$, resulting in total profit g(y) for their firm, where *y* is the sum of all partners' efforts. The profit function $g : \mathbb{R}_+ \to \mathbb{R}_+$ satisfies g(0) = 0 and it is twice differentiable with g' > 0, and $g'' \le 0$. The profit is shared equally by the partners, and each partner's effort gives him or her (quadratic) disutility. The resulting utility level for each partner *i* is

$$u_i(x_1, ..., x_n) = \frac{1}{n}g(x_1 + ... + x_n) - x_i^2/2$$

Each partner *i* has to decide his or her effort x_i without observing the others' efforts.

- (a) Show that the game has exactly one Nash equilibrium (in pure strategies), and show that all partners make the same effort, x^* , in equilibrium. (A precise and formal argumentation is required.) Is the individual equilibrium effort x^* increasing or decreasing in n, or is it independent of n? Is the aggregate equilibrium effort, $y^* = nx^*$, increasing or decreasing in n, or is it independent of n? [2 pts]
- (b) Suppose that the partners can pre-commit to a common effort level, the same for all. Let \hat{x} be the common effort level that maximizes the sum of the partners' utilities. Characterize \hat{x} in terms of an equation, and compare this level with the equilibrium effort x^* in (a), for n = 1, 2, ... Are the partners better off now than in the equilibrium in (a)? How does this depend on n? Explain! [1 pt]
- (c) Solve the tasks (a) and (b) explicitly for x^* and \hat{x} in the special case when g is linear, $g(y) \equiv y$. [2 pts]

3. Find the pure-strategy subgame perfect equilibria of the game below:

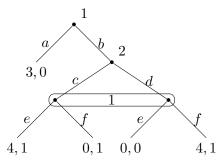


4. Use the deferred acceptance algorithm to find a stable matching in the marriage problem with ranking matrix:

			w_3	
m_1	1,3	2, 1	3, 4	4, 2
m_2	2,2	1, 4	4, 2	3,4
m_3	2, 4	4, 2	1,3	3,3
m_4	1, 32, 22, 41, 1	2,3	4, 1	3,1

[1 pt]

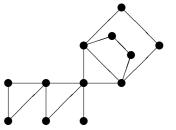
5. Consider the following extensive form game:



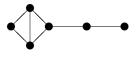
(a)	Find the corresponding strategic (i.e., normal form) game.	[1 pt]
(b)	Find all pure-strategy Nash equilibria.	[1 pt]
(c)	What is the outcome of iterated elimination of weakly dominated (pure)	strate-
	gies?	[1 pt]
(d)	Find all subgame perfect equilibria in behavioral strategies.	[2 pts]
(e)	Find all sequential equilibria.	[2 pts]

PART B – COMBINATORIAL GAME THEORY Jonas Sjöstrand

- 6. The *odd-odd vertex removal game* (odd-odd VRG) is an impartial two-player game played on an undirected graph. The players alternate moves, and in each move the player chooses a vertex of odd degree and removes it (and all its edges). When there are no odd-degree vertices left, no legal move is available and the player at turn will lose the game.
 - (a) Compute the Grundy value of the odd-odd VRG on the following graph. [2 pts]



(b) A partizan variant of the game above is the *odd-even* VRG where Left removes vertices of odd degree and Right removes vertices of even degree. What is the canonical form of the odd-even VRG on the following graph? [2 pts]



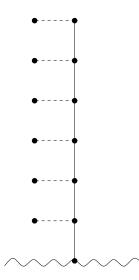
7. Let $G = \{ \frac{5}{2}, \{4 \mid 2\} \mid \{-1 \mid -2\}, \{0 \mid -4\} \}.$ (a) Draw the thermograph of G.

- (a) Draw the thermograph of G.
 (b) What is the temperature and mean value of G?
 [1 pt]
- (c) Who will win the game -6G? [1 pt]

8. Answer the following questions and give proper motivations for your answers.

- (a) Does there exist a game fuzzy to all integers?
- (b) Does there exist a short game fuzzy to all integers? [1 pt]
- (c) If x is a short number and G is a game not equal to a number, does it follow that $G + x = \{G^L + x \mid G^R + x\}$? [1 pt]
- (d) If x is a number and G is a short game not equal to a number, does it follow that $G + x = \{G^L + x \mid G^R + x\}$? [1 pt]
- (e) If $G^L < G^R$ for each left option G^L and each right option G^R of a game G, does it follow that G is equal to a number? [1 pt]

Compute the value of the following Blue-Red Hackenbush position. (Solid edges are blue and dashed edges are red.)
 [2 pts]



[1 pt]