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7 Empirical Methods

Problem 7.1. A unit within a bank is required to report an empirical estimate of
V aR0.01(X), where X is the portfolio value the next day from its trading activities.

The empirical estimate V̂ aR0.01(X) is based on market prices from the previous n + 1
days that are transformed into a sample of size n from the distribution of X, and the
sample points are assumed to be independent and identically distributed. Compute the
probability

P
(
V̂ aR0.01(X) > V aR0.01(X)

)

as a function of n and determine its minimum and maximum for n = 100, 101, . . . , 300.

Solution. We assume that effects from interest rates are negligible since we are dealing
with a one-day horizon. Thus, we have L = −X/R0 = −X. Recall the definition of
Value-at-Risk,

V aRp(X) = F−1
L (1− p) = min{x : F (x) ≥ 1− p},

and that the empirical VaR estimator is given by

V̂ aRp(X) = F−1
n,L(1− p) = L[np]+1,n, where L1,n ≥ . . . ≥ Ln,n.

Now, let YF−1

L
(q) be the number of sample points exceeding F−1

L (q), with q = 1− p. We
obtain

P
(
V̂ aRp(X) > V aRp(X)

)
= P

(
L[np]+1,n > F−1

L (1− p)
)

= P
(
YF−1

L
(q) ≥ [np] + 1

)
.

Each sample point exceeds the q-quantile with probability 1 − q, independently of the
other points. Thus, the number of sample points exceeding the q-quantile is binomially
distributed, YF−1

L
(q) ∼ Bin(n, r) with

r = P
(
L > F−1

L (1− p)
)
= 1− FL(F

−1
L (1− p)) = 1− (1− p) = p,

if F is continuous. Thus, we have

P
(
YF−1

L
(q) ≥ [np] + 1

)
=

n∑

k=[np]+1

(
n

k

)
pk(1− p)n−k.

We find

max
n

P
(
V̂ aR0.01(X) > V aR0.01(X)

)
= 0.5926 n = 199

min
n
P
(
V̂ aR0.01(X) > V aR0.01(X)

)
= 0.2642 n = 100
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Problem 7.2. The tail conditional median TCMp(X) = median[L|L ≥ V aRp(X)],
where L = −X/R0, has been proposed as a more robust alternative to ESp(X) since
TCMp(X) is not as sensitive as ESp(X) to the behaviour of the left tail of the distri-
bution of X. Let Y have a standard Student’s t distribution with ν degrees of freedom,

and set X = e0.01Y − 1. Consider the empirical estimators T̂CM0.01(X) and ÊS0.01(X)
based on a sample of size 1000 from the distribution of L = −X. Generate histograms

based on samples of size 105 from the distribtutions of T̂CM0.01(X) and ÊS0.01(X) for
ν = 2 and ν = 10.

Solution. Recall that Expected shortfall is defined as

ESp(X) =
1

p

∫ p

0

V aRu(X)du.

Since [np] is an integer in this case, the empirical estimators are given by

ÊSp(X) =
1

p

∫ p

0

V̂ aRu(X)du =
1

np

np∑

k=1

Lk,n

T̂CMp(X) = median[L|L ≥ V̂ aRp(X)] = median[L|L ≥ L[np]+1,n].

The generated histograms of the estimators are presented below.
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Figure 1: Expected shortfall and Tail conditional median for ν = 2.
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Figure 2: Expected shortfall and Tail conditional median for ν = 10.
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Problem 7.3. Let {Z1, . . . , Zn} be a sample of independent and identically distributed
historical log returns that are distributed as the log return log ST

S0
of an asset from today

until time T > 0. Show that if the risk-free return over the investment period is 1, then
the empirical estimator of ESp(ST − S0) is given by

min
c

−c+ 1

np

n∑

k=1

(c+ S0 − S0e
Zk)I{Zk ≤ log(1 +

c

S0

)}.

Solution. Using proposition 6.5, ES has the representation

ESp(X) = min
c

−c+ 1

p
E[(c− X

R0

)+]. (1)

The risk-free return over the investment period is 1, so R0 = 1. Defining the loss
L = −X, we rewrite (1) as

ESp(X) = min
c

−c+ 1

p
E[(c+ L)I{c+ L ≥ 0}]. (2)

The empirical estimator of (2) is

ÊSp(X) = min
c

−c+ 1

p
Ê[(c+ L)I{c+ L ≥ 0}], (3)

where Ê denotes the expectation with respect to the empirical distribution of L, with
P (L = lk) =

1
n
, l = 1, . . . n. Expressing the loss in terms of log-returns, we obtain

L = −X = S0 − ST = S0 − S0e
Z . (4)

Inserting (4) into (3) and using the empirical distribution of L yields

ÊSp(X) = min
c

−c+ 1

np

n∑

k=1

(c+ Lk)I{c+ Lk ≥ 0}

= min
c

−c+ 1

np

n∑

k=1

(c+ S0 − S0e
Zk)I{Zk ≤ log(1 +

c

S0

)}

6



Problem 7.4. Let {Z1, . . . , Zn} be a sample of independent and identically distributed
historical log returns that are distributed as the log return log ST

S0
of an asset from today

until time T > 0. Show that if the risk-free return over the investment period is 1 and if
ρφ is a spectral risk measure with risk aversion function φ, then the empirical estimator
of ρφ(ST − S0) is given by

S0 − S0

n∑

k=1

eZk,n

∫ (n−k+1)/n

(n−k)/n

φ(u)du.

Solution. Recall that a spectral risk measure ρφ is defined by

ρφ(X) = −
∫ 1

0

φ(u)F−1
X/R0

(u)du, (5)

where φ is decreasing, non-negative and integrates to 1. It is natural to estimate ρφ(X)
using the empirical distribution of X. The empirical quantile function is given by
F−1
n,X(p) = X[n(1−p)]+1,n. Moreover, since the risk-free return is 1, we have L = −X/R0 =

−X. Thus, we estimate ρφ(X) by

ρ̂φ(X) = −
∫ 1

0

φ(u)F−1
n,X(u)du =

∫ 1

0

φ(u)F−1
n,L(1− u)du =

∫ 1

0

φ(u)L[nu]+1,ndu. (6)

L[nu]+1,n is constant between integer values of [nu], which implies

∫ k/n

u=(k−1)/n

φ(u)L[nu]+1,ndu = Lk,n

∫ k/n

u=(k−1)/n

φ(u)du, k = 1, . . . , n. (7)

We have seen that we can express the loss L as L = S0−S0e
Z . Now since L is decreasing

in Z, we must have Lk,n = S0 − S0e
Zn−k+1,n . Using this fact and inserting (7) into (6)

yields

ρ̂φ(X) =
n∑

k=1

∫ k/n

u=(k−1)/n

φ(u)L[nu]+1,ndu =
n∑

k=1

Lk,n

∫ k/n

u=(k−1)/n

φ(u)du

=
n∑

k=1

(S0 − S0e
Zn−k+1,n)

∫ k/n

u=(k−1)/n

φ(u)du

= S0 − S0

n∑

k=1

eZn−k+1,n

∫ k/n

u=(k−1)/n

φ(u)du.
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8 Parametric Models and Their Tails

Problem 8.1. The distribution function F (x) = pΦ(x/σ1)+(1−p)Φ(x/σ2) of a mixture
of the two normal distributions N(0, σ2

1) and N(0, σ2
2) corresponds to drawing a value

with propability p from the N(0, σ2
1)-distribution and with propability 1 − p from the

N(0, σ2
2)-distribution.

(a) Use maximum likelihood to estimate the parameters p, σ1, σ2 based on the sample
{t−1

4 (k/201) : k = 1, . . . , 200)}.

(b) Plot the density function of the mixture distribution with the parameters estimated
in (a) and compare it to the density function of the standard Student’s t distribution
with four degrees of freedom.

(c) Plot the quantiles of the Student’s t distribution with four degrees of freedom against
the quantiles of the mixture distribution with the parameters estimated in (a).

(d) Determine the asymptotic behavior of F (x) as x → −∞ in terms of an explicitly
given function G such that limx→−∞ F (x)/G(x) = 1.

Solution. The maximum likelihood estimates of p, σ1, σ2 are the values that maximise
the log-likelihood function l(p, σ1, σ2) defined by

l(p, σ1, σ2) =
n∑

k=1

log f(xk|p, σ1, σ2), (8)

where x1, . . . , xn is an i.i.d. sample from some distribution. The density of the normal
mixture is given by

f(x|p, σ1, σ2) =
d

dx
F (x) =

p

σ1
φ(
x

σ1
) +

1− p

σ2
φ(
x

σ2
). (9)

Inserting (9) into (8), we obtain

n∑

k=1

log
( p
σ1
φ(
xk
σ1

) +
1− p

σ2
φ(
xk
σ2

)
)
. (10)

We maximize (10) numerically and obtain the parameter estimates
(p̂, σ̂1, σ̂2) = (0.6270, 0.8663, 1.7917). We plot the densities for the normal mixture and
Student’s t distributions.
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They appear almost identical, which is confirmed by a qq-plot.

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 
t(4)
normal mixture

Figure 3: Densities for the normal mixture and Student’s t distributions.
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Figure 4: qq-plot of the normal mixture vs Student’s t distributions.
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However, as we look further out in the tail, it becomes obvious that the Student’s t
distribution has a heavier tail than the normal mixture. This illustrates the fact that
it might be dangerous to draw conclusions about the tail of a distribution from data
obtained in the center of the distribution.
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Figure 5: qq-plot of the normal mixture vs Student’s t distributions.

To determine the asymptotic behavior of F (x) as x → −∞, it suffices to find a
function G such that

lim
q→0

F (G−1(q))

q
= 1, (11)

since this implies that

lim
x→−∞

F (x)

G(x)
= lim

q→0

F (G−1(q))

G(G−1(q))
= lim

q→0

F (G−1(q))

q
= 1. (12)

It is natural to assume that the distribution with the fatter tail will dominate. In this
case, it is the distribution with the higher σ. From now on, we will assume that σ1 > σ2,
otherwise we can simply rearrange the order. This would imply that

F (x) = pΦ(x/σ1) + (1− p)Φ(x/σ2) ∼ pΦ(x/σ1). (13)

Thus, we assume that G(x) = pΦ(x/σ1), which is equivalent to G−1(q) = σ1Φ
−1(q/p).

We obtain

lim
q→0

F (G−1(q))

q
= lim

q→0

pΦ(σ1
Φ−1(q/p)

σ1
) + (1− p)Φ(σ1

Φ−1(q/p)
σ2

)

q
. (14)

It easily seen that the first term equals 1. If we can show that the second term vanishes,
then we have the desired result. Let z = Φ−1(q/p), or equivalently, q = pΦ(z).
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Then, as q → 0, z → −∞. For the standard normal distribution function it holds that

Φ(x/σ) ∼ σ

−xφ(x/σ), (15)

as x→ −∞, see Example 8.1 for details. We have

lim
q→0

(1− p)Φ(σ1
Φ−1(q/p)

σ2
)

q
= lim

z→−∞

(1− p)Φ( z
σ2/σ1

)

pΦ(z)
∼

(1− p)σ2/σ1

−z
φ( z

σ2/σ1
)

p 1
−z
φ(z)

(16)

= C exp
(
− z2

2(σ2/σ1)2
+
z2

2

)
(17)

= C exp
(z2
2
(1− σ2

1

σ2
2

)
)
→ 0, (18)

since by assumption σ1 > σ2. We conclude that G(x) = pΦ(x/σ1).
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Problem 8.2. Consider the Student’s t location-scale family with parameter vector
(µ, σ, ν).

(a) Determine the log-likelihood function and estimate the parameters based on the
sample {t−1

4 (k/201) : k = 1, . . . , 200}.

Simulate 3,000 samples of size 200 from the standard Student’s t distribution with four
degrees of freedom.

(b) For each sample compute the maximum-likelihood estimate of the parameter vector
(µ, σ, ν). Make a scatter plot of the 3,000 parameter estimates (σ̂, ν̂) and interpret
the plot.

(b) For each sample compute the least-squares estimate of the parameter vector (µ, σ, ν).
Make a scatter plot of the 3,000 parameter estimates (σ̂, ν̂), interpret the plot, and
compare the plot to that in (b).

(b) For each sample compute the sample standard deviation and divide the sample by
the sample standard deviation. Consider each rescaled sample to be a sample from
a Student’s t distribution with unit variance and estimate the degrees-of-freedom
parameter by maximum likelihood. Transform the estimates into estimates of the
parameter pair (σ, ν) for a centered Student’s t distribution with scale parameter
σ. Make a scatter plot of the 3,000 parameter estimates (σ̂, ν̂), interpret the plot,
and compare the plot to that in (b).

Solution. The density of the location-scale Student’s t distribution is given by

f(x|µ, σ, ν) = Γ((ν + 1)/2)

σ
√
νπΓ(ν/2)

(
1 +

(x− µ)2

νσ2

)−(ν+1)/2

.

The log-likelihood function becomes

l(µ, σ, ν) =
200∑

k=1

log

(
Γ((ν + 1)/2)

σ
√
νπΓ(ν/2)

(
1 +

(xk − µ)2

νσ2

)−(ν+1)/2
)
,

where xk = t−1
4 (k/201). Maximizing l numerically gives the parameter estimates (µ̂, σ̂, ν̂) =

(0, 1.0349, 5.3090).

Next, we simulate 3,000 samples of size 200 from the standard Student’s t distribution
with four degrees of freedom. For each sample, we compute the maximum likelihood
estimates (µ̂, σ̂, ν̂). A scatter plot of the 3,000 parameter estimates (σ̂, ν̂) is presented
below.
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Figure 6: Scatter plot of the 3,000 parameter estimates (σ̂, ν̂) using ML.
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Figure 7: Scatter plot of the 3,000 parameter estimates (σ̂, ν̂) using ML.
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A likelihood surface for σ̂ vs ν̂ for one sample is plotted below.
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Figure 8: Likelihood surface for σ̂ vs ν̂ for one sample.

We see that the likelihood surface seems rather flat in the center. You may get quite
different optimal values of (σ̂, ν̂) for different numerical algorithms.

14



The least-squares estimates of (µ, σ, ν) are the values that minimize the sum of
the squared deviations between the empirical quantiles and the quantiles of a chosen
parametric distribution, formally

n∑

k=1

(
zk,n − F−1

(n− k + 1

n+ 1

))2
. (19)

Recall that the distribution function of the location-scale Student’s t distribution is
given by

F (x) = tν
(x− µ

σ

)
,

where tν(x) is the standard Student’s t distribution function. It follows that the quantile
function is given by

F−1(p) = µ+ σt−1
ν (p), (20)

where t−1
ν (p) is the standard Student’s t quantile function. Inserting (20) into (19), we

obtain the following expression for the sum of squared deviations:

n∑

k=1

(
zk,n − µ− σt−1

ν

(n− k + 1

n+ 1

))2
. (21)

Minimizing (21) w.r.t. (µ, σ, ν) gives the least-squares estimates (µ̂, σ̂, ν̂).
We simulate 3,000 samples of size 200 from the standard Student’s t distribution

with four degrees of freedom. For each sample, we compute the least-squares estimates
(µ̂, σ̂, ν̂). A scatter plot of the 3,000 parameter estimates (σ̂, ν̂) is presented below.

15



0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

5

10

15

20

25

30

35

40
LS:sigma vs nu

Figure 9: Scatter plot of the 3,000 parameter estimates (σ̂, ν̂) using LS.
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Figure 10: Scatter plot of the 3,000 parameter estimates (σ̂, ν̂) using LS.
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For each sample, we compute the sample standard deviation s, and divide the sample
by s. We consider each rescaled sample to be a sample from a Student’s t distribution
with unit variance. Recall that a random variable Y with the location-scale Student’s t
distribution has the representation

Y
d
=µ+ σZ,

where Z has a standard Student’s t distribution. To obtain a distribution with unit
variance, we must have

1 = V ar(Y ) = V ar(µ+ σZ) = σ2V ar(Z) = σ2 ν

ν − 2

which yields σ =
√

ν−2
ν

. Using this, the log-likelihood function becomes

l(µ, ν) =
200∑

k=1

log

(
Γ((ν + 1)/2)√
(ν − 2)πΓ(ν/2)

(
1 +

(xk − µ)2

ν − 2

)−(ν+1)/2
)
.

Maximizing l yields the degrees-of-freedom estimate ν̂. To find the estimate of the scale
parameter σ, consider again

V ar(Y ) = σ2 ν

ν − 2
,

which is equivalent to

σ =

√
ν − 2

ν
V ar(Y ).

We estimate σ with

σ̂ = s

√
ν̂ − 2

ν̂

for each sample. A scatter plot of the 3,000 parameter estimates (σ̂, ν̂) is presented
below.
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Figure 11: Scatter plot of the 3,000 parameter estimates (σ̂, ν̂) using ML.

There is something strange with this picture: we have some observations near the
point (0, 0). If we zoomed in, we would see that these points had ν̂ < 2. Since we have

σ =
√

ν−2
ν

, this should be impossible. We must take care that ν̂ only takes values larger

than 2 in our optimization procedure. Maximizing l with the constraint ν̂ > 2 for each
sample yields the following scatter plot.
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Figure 12: Scatter plot of the 3,000 parameter estimates (σ̂, ν̂) using ML.
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Figure 13: Scatter plot of the 3,000 parameter estimates (σ̂, ν̂) using ML.

Clearly, our numerical problem is gone. It is however not so clear whether this
two-step fitting algorithm gave any improvement over standard maximum likelihood.
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Problem 8.3. Let X be LN(µ, σ2)-distributed.

(a) Show that, as x→ ∞,

P (X > x) ∼ σ√
2π(log x− µ)

exp
(
− (log x− µ)2

2σ2

)

(b) Use the result in (a) to show that, for any λ, α > 0,

lim
x→∞

P (X > x)

e−λx
= ∞ and lim

x→∞

P (X > x)

x−α
= 0.

Solution. X has the representation

X
d
= exp(µ+ σZ), Z ∼ N(0, 1).

Using this, we have

P (X > x) = 1− P (X ≤ x) = 1− P (exp(µ+ σZ) ≤ x) = 1− P (Z ≤ log x− µ

σ
)

= 1− Φ(
log x− µ

σ
) = Φ(− log x− µ

σ
)

For the standard normal distribution function it holds that

Φ(x) ∼ 1

−xφ(x), (22)

as x→ −∞, see Example 8.1 for details.

Now, as x→ ∞, − log x−µ
σ

→ −∞. It follows that

Φ(− log x− µ

σ
) ∼ 1

−(− log x−µ
σ

)
φ(− log x− µ

σ
) =

σ√
2π(log x− µ)

exp
(
− (log x− µ)2

2σ2

)
.

Using this result,

lim
x→∞

P (X > x)

e−λx
= lim

x→∞

σ√
2π(log x−µ)

exp(− (log x−µ)2

2σ2 )

exp(−λx)

= lim
x→∞

C exp
(
− (log x− µ)2

2σ2
+ λx

)
(log x− µ)−1

= lim
x→∞

C exp
(
− (log x− µ)2

2σ2
+ λx− log(log x− µ)

)
.

Now, it is well known that x dominates log x, which implies that x also dominates
log(log x). Further, to see that x dominates (log x)2, let y = log x, and recall that ey

dominates y2. Thus, the expression in the exponent goes to ∞, and it follows that

lim
x→∞

P (X > x)

e−λx
= ∞.
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Again using the result from (a),

lim
x→∞

P (X > x)

x−α
= lim

x→∞

σ√
2π(log x− µ)

exp
(
− (log x− µ)2

2σ2

)
xα

= lim
x→∞

C exp
(
− (log x− µ)2

2σ2
+ α log x− log(log x− µ)

)
.

The dominating term is (log x)2. It follows that the exponent goes to −∞, and

lim
x→∞

P (X > x)

x−α
= 0.

Thus, we have shown that the log-normal tail is heavier than every exponential tail, but
lighter than any polynomial tail.
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9 Multivariate Models

Problem 9.1.

Solution. Let a = (h1, . . . , hd,−1) and Y = (X1, . . . , Xd, L). Y has an elliptical distri-
bution, that is

Y = µ+ AZ, aTY = aTµ+ aTAZ
d
= aTµ+

√
aTΣaZ1,

where Σ = AAT and Z has a spherical distribution. From Proposition 3.2, the portfolio
weights that minimize E[(h0 + aTY )2] must satisfy E[h0 + aTY ] = h0 + aTµ = 0. Thus,
we have

E[(h0 + aTY )2] = (E[h0 + aTY ])2 + V ar(h0 + aTY )

= V ar(
√
aTΣaZ1) = aTΣaV ar(Z1).

We see that the optimal quadratic hedge is the vector that minimizes aTΣa. Now, for
any positive homogeneous risk measure ρ, we have

ρ(h0 + aTY ) = ρ(h0 + aTµ+ aTAZ) = ρ(aTAZ) =
√
aTΣaρ(Z1).

Thus, the vector a that minimizes E[(h0 + aTY )2] also minimizes ρ(h0 + aTY ).
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Problem 9.2.

Solution. X and Y have the representations

X
d
=R01+WxAZ, Y

d
=1R0 +WyAZ,

where AAT = Σ is a common dispersion matrix, Z ∼ Nd(0, I) and Wx and Wy are non-
negative random variables. The portfolio values at the end of the investment period,
denoted VX(w) and VY (w), can be written as

VX(w) = wTX
d
=wT (R01+WxAZ) = V0R0 +Wxw

TAZ
d
=V0R0 +Wx

√
wTAATwZ1,

and similar for VY (w). Thus, for a positive homogeneous risk measure ρ and a positive
semi-definite dispersion matrix AAT , we have

ρ(VX(w)− V0R0)

ρ(VY (w)− V0R0)
=
ρ(V0R0 +Wx

√
wTAATwZ1 − V0R0)

ρ(V0R0 +Wy

√
wTAATwZ1 − V0R0)

=

√
wTAATwρ(WxZ1)√
wTAATwρ(WyZ1)

=
ρ(WxZ1)

ρ(WyZ1)
.

If, in particular, X has a Student’s t distribution with four degrees of freedom, Y has a
normal distribution, and ρ is given by VaRp, then

V aRp(VX(w)− V0R0)

V aRp(VY (w)− V0R0)
=
V aRp(WxZ1)

V aRp(Z1)
=

t−1
4 (p)

Φ−1(p)
.
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Problem 9.3.

Solution. The Gaussian copula for the pair (X1, X2), with common distribution func-
tion t4, can be written

CGa
ρ (F1(x1), F2(x2)) = Φ2

ρ(Φ
−1(t4(x1)),Φ

−1(t4(x2))),

where ρ is the linear correlation. Note that,under the Gaussian copula, the pair (Φ−1(t4(X1)),Φ
−1(t4(X2)))

has a bivariate normal distribution. Using, in turn, the probability and quantile trans-
forms, we obtain

lim
x→∞

P (X2 > x|X1 > x) = lim
x→∞

P (Φ−1(t4(X2)) > Φ−1(t4(x))|Φ−1(t4(X1)) > Φ−1(t4(x))).

As x→ ∞, Φ−1(t4(x)) → ∞, so we may rewrite the above as

lim
z→∞

P (Φ−1(t4(X2)) > z|Φ−1(t4(X1)) > z).

It follows from the symmetry of elliptical distributions that

lim
z→∞

P (Φ−1(t4(X2)) > z|Φ−1(t4(X1)) > z) = lim
z→−∞

P (Φ−1(t4(X2)) ≤ z|Φ−1(t4(X1)) ≤ z).

Finally, using Proposition 9.5, we have

lim
x→∞

P (X2 > x|X1 > x) = lim
z→−∞

P (Φ−1(t4(X2)) ≤ z|Φ−1(t4(X1)) ≤ z) = 0.

The Student’s t copula for the pair (X1, X2), with common distribution function t4,
can be written

Ct
ν,ρ(F1(x1), F2(x2)) = t26,ρ(t

−1
6 (t4(x1)), t

−1
6 (t4(x2))).

Note that, under the Student’s t copula, the pair (t−1
6 (t4(X1)), t

−1
6 (t4(X2))) has a bi-

variate Student’s t distribution with ν = 6 degrees of freedom. Using, in turn, the
probability and quantile transforms, we obtain

lim
x→∞

P (X2 > x|X1 > x) = lim
x→∞

P (t−1
6 (t4(X2)) > t−1

6 (t4(x))|t−1
6 (t4(X1)) > t−1

6 (t4(x))).

Again using the symmetry of elliptical distributions, we may rewrite the above with
z = t−1

6 (t4(x)) as
lim

z→−∞
P (t−1

6 (t4(X2)) ≤ z|t−1
6 (t4(X1)) ≤ z).

Since the t6-distribution is regularly varying with tail index α = 6, in follows from
Proposition 9.6 that

lim
x→∞

P (X2 > x|X1 > x) = lim
z→−∞

P (t−1
6 (t4(X2)) ≤ z|t−1

6 (t4(X1)) ≤ z)

=

∫ π/2

(π/2−arcsinρ)/2
cos6tdt

∫ π/2

0
cos6tdt

≈ 0.17
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Problem 9.4.

Solution. For comonotone random variables X1 and X2 with distribution functions F1

and F2 we can write

(X1, X2) = (X1, F
−1
2 (F1(X1))).

Thus, we have

V aRp(X1 +X2) = −F−1
X1+X2

(p) = −F−1

X1+F−1

2
(F1(X1))

(p). (23)

The function x + F−1
2 (F1(x)) is non-decreasing in x, and if we assume that F1 and F2

are continuous, it follows from Proposition 6.3 that (23) equals

−(F−1
1 (p) + F−1

2 (F1(F
−1
1 (p))) = −F−1

1 (p)− F−1
2 (p) = V aRp(X1) + V aRp(X2),

which shows that V aRp is additive for comonotone random variables.

Using this result, we have, for any spectral risk measure ρφ,

ρφ(X1 +X2) = −
∫ 1

0

φ(u)F−1
X1+X2

(u)du = −
∫ 1

0

φ(u)(F−1
1 (u) + F−1

2 (u))du

= −
∫ 1

0

φ(u)(F−1
1 (u))du−

∫ 1

0

φ(u)(F−1
2 (u))du = ρφ(X1) + ρφ(X2).
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Problem 9.5.

Solution. Let (U ′
1, U

′
2) be an independent copy of (U1, U2). Recall that Kendall’s tau

is defined as

τ(U1, U2) = P ((U1 − U ′
1)(U2 − U ′

2) > 0)− P ((U1 − U ′
1)(U2 − U ′

2) < 0).

If (U1, U2) does not have a point mass anywhere, this expression simplifies to

τ(U1, U2) = 2P ((U1 − U ′
1)(U2 − U ′

2) > 0)− 1.

Further,

P ((U1−U ′
1)(U2−U ′

2) > 0) = P (U1−U ′
1 > 0, U2−U ′

2 > 0)+P (U1−U ′
1 < 0, U2−U ′

2 < 0).

We have

P (U1 − U ′
1 < 0, U2 − U ′

2 < 0) = P (U1 < U ′
1, U2 < U ′

2) =

∫
P (U1 ≤ u1, U2 ≤ u2)dC(u1, u2)

=

∫
C(u1, u2)dC(u1, u2) = E[C(U1, U2)].

Similarly,

P (U1 − U ′
1 > 0, U2 − U ′

2 > 0) = 1− P (U1 < U ′
1)− P (U2 < U ′

2) + P (U1 < U ′
1, U2 < U ′

2)

= 1− 0.5− 0.5 + E[C(U1, U2)] = E[C(U1, U2)],

and it follows that

τ(U1, U2) = 2(E[C(U1, U2)] + E[C(U1, U2)])− 1 = 4E[C(U1, U2)]− 1.

Now, recall that the expected value of a random variable X on [0, 1] can be written

E[X] =

∫ 1

0

xdF (x) =

∫ 1

0

∫ x

0

dtdF (x) =

∫ 1

0

∫ 1

t

dF (x)dt =

∫ 1

0

P (X ≥ t)dt.

Using this relation, we obtain

E[C(U1, U2)] =

∫ 1

0

P (C(U1, U2) > t)dt =

∫ 1

0

(1− t+
Ψ−1(t)

(Ψ−1)′(t)
)dt

= 1− 1

2
+

∫ 1

0

Ψ−1(t)

(Ψ−1)′(t)
dt,

which yields

τ(U1, U2) = 4E[C(U1, U2)]− 1 = 4(
1

2
+

∫ 1

0

Ψ−1(t)

(Ψ−1)′(t)
dt)− 1 = 1 + 4

∫ 1

0

Ψ−1(t)

(Ψ−1)′(t)
dt.
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For the special case of the Clayton copula, we have from Example 9.16 that

ψ−1(u) = u−θ − 1, (ψ−1)′(u) = −θu−θ−1.

It follows that

τ(U1, U2) = 1 + 4

∫ 1

0

Ψ−1(t)

(Ψ−1)′(t)
dt = 1 + 4

∫ 1

0

t−θ − 1

−θt−θ−1
dt = 1− 2

θ
+

4

θ(θ + 2)
=

θ

θ + 2
.
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Problem 9.6.

Solution. The distribution function can be obtained from Table 4.1 simply by summing
up the cells, e.g.

P (X1 ≤ 1, X2 ≤ 3) = P (X1 = 1, X2 = 1) + P (X1 = 1, X2 = 2) + P (X1 = 1, X2 = 3).

Repeating this for all cells gives the distribution function on matrix form as

x1\x2 1 2 3 4

1 0.098736 0.099792 0.099842 0.099842

2 0.731454 0.830309 0.849379 0.850300

3 0.796051 0.938708 0.976856 0.980003

4 0.800633 0.950533 0.995117 1

Table 1: Distribution function F (x1, x2).

To obtain the copula C defined by C(F1(x1), F2(x2)) = F (x1, x2), simply change the
axis values from (x1, x2) to (F1(x1), F2(x2)), e.g. C(F1(2), F2(3)) = F (2, 3). This gives
the copula in matrix form as

F1(x1)\F2(x2) 0.800633 0.950533 0.995117 1

0.099842 0.098736 0.099792 0.099842 0.099842

0.850300 0.731454 0.830309 0.849379 0.850300

0.980003 0.796051 0.938708 0.976856 0.980003

1 0.800633 0.950533 0.995117 1

Table 2: The copula C(F1(x1), F2(x2).

The above copula can be approximated by a Gaussian copula, and the correlation
parameter ρ is estimated using least-squares, that is ρ is chosen as to minimize

∑

(u,v)

(Φ2
ρ(Φ

−1(u),Φ−1(v))− C(u, v))2.

The estimated linear correlation is ρ = 0.5984.
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Problem 9.7.

Solution. We seek a function g such that P (Xk = 1|g(Y ) = θ) = θ. We have

P (Xk = 1|g(Y ) = θ) = P (Xk = 1|Y = g−1(θ)) = P (
√
ρg−1(θ) +

√
1− ρYk ≤ Φ−1(p))

= P (Yk ≤
Φ−1(p)−√

ρg−1(θ)√
1− ρ

) = Φ(
Φ−1(p)−√

ρg−1(θ)√
1− ρ

).

Setting this expression equal to θ and substituting θ for g(Y ) yields

g(Y ) = Φ(
Φ−1(p)−√

ρY√
1− ρ

).

To find the q-quantile of g(Y ), we first note that g is decreasing. Propositions 6.3-6.4
yield

F−1
g(Y )(q) = −F−1

−g(Y )(1− q) = −(−g(F−1
Y (1− q))) = g(Φ−1(1− q))

= Φ(
Φ−1(p)−√

ρΦ−1(1− q)√
1− ρ

) = Φ(
Φ−1(p) +

√
ρΦ−1(q)√

1− ρ
).

Consider the aforementioned portfolio of n =1,000 loans, and define the number of
defaults Dn =

∑n
k=1Xk. Then, the one-year profit Sn of the portofolio is

Sn = 10, 000(n−Dn)− 0.25 · 1, 000, 000Sn = 10, 000n− 260, 000Dn.

Further, the one-year Expected Shortfall is given by

ESp(Sn) =
1

0.01

∫ 0.01

0

V aRu(Sn)du,

with

V aRu(Sn) = V aRu(10, 000n− 260, 000Dn) = −10, 000n

R0

+ 260, 000V aRu(−Dn).

To evaluate the above expression, we must resort to simulations or approximations. We
choose the latter, and consider the case where n is large. Indeed, it follows from the
conditional law of large numbers that, conditional on Y ,

Dn

n
→ P (Xk = 1|Y ) = g(Y ) a.s.

Thus, we may, for large n, approximate Dn by

Dn ≈ ng(Y ).

Using this approximation,

V aRu(−Dn) = F−1
Dn/R0

(1−u) ≈ F−1
ng(Y )/R0

(1−u) = n

R0

F−1
g(Y )(1−u) =

n

R0

Φ(
Φ−1(p) +

√
ρΦ−1(1− u)√

1− ρ
).
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Finally, we obtain an approximate ESp(Sn) as

ESp(Sn) ≈ −10, 000n

R0

+
260, 000n

0.01R0

∫ 0.01

0

Φ(
Φ−1(p) +

√
ρΦ−1(1− u)√

1− ρ
)du,

which can be integrated numerically. We find that ESp(Sn) ≈ 46.8 millions, or
4, 68% of the capital.
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Problem 9.8.

Solution. The portfolio weights w1 and w2 satisfy the following system of equations

w1 + w2 = V0

w1E[R1] + w2E[R2] = 1.06V0,

where R0 and R1 denote the return on the bond and stock portoflios, respectively,
and V0is the initial capital. The system admits the solution w1 = w2 = 1

2
. Let w =

(w1, w2,−1) and X = (R1, R2, L). By assumption, X has a multivariate Student’s t
distribution with ν = 4, and it follows that

A− L = wTX
d
=wT (µ+ AZ)

d
=wTµ+

√
wTAATwZ1,

where Z has a multivariate standard Student’s t distribution. Denoting AAT by Σ, we
have, under the assumption that the risk-free return R0 = 1, that

V aR0.005(A− L) = V aR0.005(w
Tµ+

√
wTΣwZ1)

= −wTµ+
√
wTΣwV aR0.005(Z1)

= −wTµ+
√
wTΣwt−1

4 (0.995).

The dispersion matrix is given by

Σi,j = Cor(Xi, Xj)
ν − 2

ν

√
V ar(Xi)V ar(Xj).

We evaluate the risk numerically and obtain V aR0.005(A−L) ≈ −920, 000, which means
that the insurer is solvent.

Next, we consider an instantaneous decline of 15% in the value of the stock mar-
ket portfolio. Immediately after the shock, the portfolio weights w are (V0

2
, 0.85V0

2
,−1) =

(0.5V0, 0.425V0,−1). Re-evaluating the risk numerically yields V aR0.005(A−L) ≈ 13, 000,
which means that the insurer is no longer solvent. To achieve solvency, the insurer wishes
to rebalance the portfolio with weights w̃1 and w̃2 so that

V aR0.005(A− L) = 0,

under the constraint w̃1 + w̃2 = Ṽ0, where Ṽ0 =
V0

2
+ 0.85V0

2
. Solving numerically for w̃,

we obtain

(w̃1, w̃2) = (0.5132V0, 0.4118V0),

so the insurer should reduce the exposure to the stock market in favour of the bond
market. The expected return of the adjusted asset portfolio is

E[A]

Ṽ0
=
w̃1E[R1] + w̃2E[R2]

Ṽ0
= 1.0556,

slightly lower than the initial target return of 1.06.
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