SF3953: Markov Chains and Processes

Spring 2017

Lecture 1: Basic Definitions

Lecturer: Jimmy Olsson

February 16

Goals of this lecture

- To introduce transition kernels and operations on the same.
- To introduce homogeneous Markov chains.

Stochastic processes

Let $(\Omega, \mathbb{P}, \mathcal{F})$ be a probability space, (X, \mathcal{X}) a measurable space, and T a set. We recall the following definitions.

Definition 1.1 (stochastic process). A family of X-valued random variables indexed by T is called an X-valued stochastic process indexed by T.

In this course we consider only the cases $T = \mathbb{N}$ and $T = \mathbb{Z}$.

Definition 1.2 (filtration). A filtration of a measurable space (Ω, \mathcal{F}) is an increasing sequence $\{\mathcal{F}_k : k \in \mathbb{N}\}$ of sub- σ -fields of \mathcal{F} .

Definition 1.3 (filtered probability space). A filtered probability space $(\Omega, \{\mathcal{F}_k : k \in \mathbb{N}\}, \mathcal{F})$ is a probability space endowed with a filtration.

Definition 1.4. A stochastic process $\{X_k : k \in \mathbb{N}\}$ is said to be adapted to the filtration $\{\mathcal{F}_k : k \in \mathbb{N}\}$ if for each $k \in \mathbb{N}$, X_k is \mathcal{F}_k -measurable. (Notation: $\{(X_k, \mathcal{F}_k) : k \in \mathbb{N}\}$.)

Definition 1.5. The natural filtration of a stochastic process $\{X_k : k \in \mathbb{N}\}$ defined on a probability space $(\Omega, \mathbb{P}, \mathcal{F})$ is the filtration $\{\mathcal{F}_k^X : k \in \mathbb{N}\}$ defined by

$$\mathcal{F}_k^X = \sigma(X_j : j \in \mathbb{N}, j \le k), \quad k \in \mathbb{N}.$$

Kernels

In the following, let $F(\mathcal{X})$, $F_+(\mathcal{X})$, and $F_b(\mathcal{X})$ denote the sets of measurable functions, non-negative measurable functions and bounded measurable functions on (X, \mathcal{X}) , respectively. In addition, $M_+(\mathcal{X})$ and $M_1(\mathcal{X})$ denote the sets of measures and probability measures on (X, \mathcal{X}) , respectively.

Definition 1.6 (kernel). Let (X, \mathcal{X}) and (Y, \mathcal{Y}) be measurable spaces. A kernel is a mapping $K: X \times \mathcal{Y} \to \mathbb{R}_+ = [0, \infty]$ satisfying the following conditions:

- (i) for every $x \in X$, the mapping $\mathcal{Y} \ni A \mapsto K(x, A)$ is a measure on \mathcal{Y} ,
- (ii) for every $A \in \mathcal{Y}$, the mapping $X \ni x \mapsto K(x, A)$ is a measurable function from (X, \mathcal{X}) to \mathbb{R}_+ .

In addition, the kernel K is said to be

- bounded if $\sup_{x \in X} K(x, Y) < \infty$,
- Markovian (or, a Markov kernel) if K(x, Y) = 1 for all $x \in X$.

Example 1.7 (kernel on a discrete state space). Assume that X and Y are countable sets and denote by $\wp(Y)$ the power set of Y. In this case, a kernel K on $X \times \wp(Y)$ is specified by a (possibly doubly infinite) transition matrix $\{k(x,y): (x,y) \in X \times Y\}$. More specifically, define

$$K: \mathsf{X} \times \wp(\mathsf{Y}) \ni (x, A) \mapsto \sum_{y \in A} k(x, y).$$

Then for each $x \in X$, the row $\{k(x,y) : y \in Y\}$ defines a measure on $\wp(Y)$. The kernel K is Markovian if each row in the matrix sums to one.

Example 1.8 (kernel density). Let $\lambda \in M_+(\mathcal{Y})$ be σ -finite and $k : X \times Y \to \mathbb{R}_+$ a measurable function. Then

$$K: \mathsf{X} \times \mathcal{Y} \ni (x, A) \mapsto \int_{A} k(x, y) \, \lambda(\mathrm{d}y)$$

is a kernel. (This follows from the Tonelli-Fubini theorem, which holds for σ -finite measures.) The kernel K is Markovian if $\int k(x,y) \lambda(dy) = 1$ for all $x \in X$.

Let K be a kernel on $X \times Y$ and $f \in F_+(Y)$. Then we define

$$Kf: \mathsf{X} \ni x \mapsto \int f(y) K(x, \mathrm{d}y).$$

In addition, we set $Kf = Kf^+ - Kf^-$ for all functions $f \in \mathsf{F}(\mathcal{Y})$ such that Kf^+ and Kf^- are not both infinity.²

Exercise 1.9. Show that for all $f \in F_+(\mathcal{Y})$, $Kf \in F_+(\mathcal{X})$. (Hint: first, establish the claim for simple functions.) Moreover, show that if K is Markovian, then for all $f \in F_b(\mathcal{Y})$, $Kf \in F_b(\mathcal{X})$.

Recall that $\mathcal{B}(\bar{\mathbb{R}}) = \sigma(\{[-\infty, x] : x \in \mathbb{R}\})$. In addition, $\bar{\mathbb{R}}_+$ is furnished with the σ -field $\{B \cap \bar{\mathbb{R}}_+ : B \in \mathcal{B}(\bar{\mathbb{R}})\}$.

²Recall that $f^+ = f \vee 0$ and $f^- = -(f \wedge 0)$ are both measurable if f is so.

In addition, kernels operates on measures. Let $\mu \in M_+(\mathcal{X})$ and define the mapping

$$\mu K: \mathcal{Y} \ni A \mapsto \int K(x, A) \, \mu(\mathrm{d}x).$$

Exercise 1.10. Show that for all $\mu \in M_+(\mathcal{X})$, $\mu K \in M_+(\mathcal{Y})$.

Moreover, we define the *composition* of two kernels. Let K be as above, let $(\mathsf{Z}, \mathcal{Z})$ be a third measurable space, and let L be a kernel on $\mathsf{Y} \times \mathcal{Z}$. Now, define the mapping

$$KL: \mathsf{X} \times \mathcal{Z} \ni (x, A) \mapsto \int L(y, A) K(x, \mathrm{d}y).$$

Exercise 1.11. Show that KL is a kernel on $X \times Z$.

For all $x \in X$ and $f \in F_+(Z)$, it holds that KLf(x) = K(Lf)(x). (Prove the claim first for simple functions and then generalise it to general nonnegative measurable functions by using twice the monotone convergence theorem.)

We may define iteratively the *n*th power of a kernel K on $X \times \mathcal{X}$ by letting K^0 : $X \times \mathcal{X} \ni (x, A) \mapsto \delta_x(A)$ and $K^n = K^{n-1}K$ for $n \in \mathbb{N}^*$. For integers $(n, m) \in \mathbb{N}^2$, this implies immediately the *Chapman-Kolmogorov equation*

$$K^{n+m}f = K^{n+m-1}Kf = K^{n+m-2}K(Kf) = K^{n+m-2}K^2f = \dots = K^nK^mf$$

for all $f \in F_b(\mathcal{X})$, implying that $K^{n+m} = K^n K^m$. Finally, we define tensor products of kernels. Let K and L be as above and define

$$K \otimes L : \mathsf{X} \times (\mathcal{Y} \otimes \mathcal{Z}) \ni (x, A) \mapsto \int \left(\int \mathbb{1}_A(y, z) L(y, \mathrm{d}z) \right) K(x, \mathrm{d}y).$$

One can prove that $K \otimes L$ is a kernel on $\mathsf{X} \times (\mathcal{Y} \otimes \mathcal{Z})$. (Indeed, let \mathcal{H} be the set of bounded functions f such that $f(y,\cdot) \in \mathsf{F}(\mathcal{Z})$ for all $y \in \mathsf{Y}$ and $\int f^{\pm}(\cdot,z) \, L(\cdot,\mathrm{d}z) \in \mathsf{F}(\mathcal{Y})$, and prove, using the functional monotone class theorem, that $\mathsf{F}_{\mathsf{b}}(\mathcal{Y} \otimes \mathcal{Z}) \subset \mathcal{H}$. Then, prove that $K \otimes L(x,\cdot) \in \mathsf{M}_{+}(\mathcal{Y} \otimes \mathcal{Z})$ for all $x \in \mathsf{X}$ by using twice the monotone convergence theorem.)

Exercise 1.12. Show that

- if K and L are both bounded, so is $K \otimes L$.
- if K and L are both Markovian, so is $K \otimes L$.

Also for the tensor product we define the *n*th power; more specifically, set $K^{\otimes 1} = K$ and define iteratively $K^{\otimes n} = K \otimes K^{\otimes (n-1)}$ for $n \in \mathbb{N}^* \setminus \{1\}$, i.e., $K^{\otimes n}$ is a kernel on $X \times \mathcal{X}^{\otimes n}$. Carrying through the recursion yields the alternative expression

$$K^{\otimes n}: \mathsf{X} \times \mathcal{X}^{\otimes n} \ni (x_0, A) \mapsto \int \cdots \int \mathbb{1}_A(x_1^n) \prod_{k=0}^{n-1} K(x_k, \mathrm{d}x_{k+1}),$$

where we used the vector notation $x_m^n = (x_m, \dots, x_n)$ for $(m, n) \in \mathbb{Z}^2$ with $m \leq n$.

We also define the tensor product of a measure $\mu \in M_+(\mathcal{X})$ and a kernel K on $X \times \mathcal{Y}$ as the measure

$$\mu \otimes K : \mathcal{X} \otimes \mathcal{Y} \ni A \mapsto \int \left(\int \mathbb{1}_A(x, y) K(x, dy) \right) \mu(dx).$$

Homogeneous Markov chains

Definition 1.13 (homogeneous Markov chain). Let (X, \mathcal{X}) be a measurable space and P a Markov kernel on $X \times \mathcal{X}$. Let $(\Omega, \mathcal{F}, \{\mathcal{F}_k : k \in \mathbb{N}\}, \mathbb{P})$ be a filtered probability space. An adapted stochastic process $\{(X_k, \mathcal{F}_k) : k \in \mathbb{N}\}$ is called a homogeneous Markov chain with kernel P if for all $h \in F_b(\mathcal{X})^3$ and $k \in \mathbb{N}$,

$$\mathbb{E}[h(X_{k+1}) \mid \mathcal{F}_k] = Ph(X_k), \quad \mathbb{P}\text{-}a.s.$$

The distribution of X_0 is called the initial distribution.

A homogeneous Markov chain is always a homogeneous Markov chain with respect to its natural filtration (why?). Thus, we will always assume in the following that $\{\mathcal{F}_k : k \in \mathbb{N}\}$ is the natural filtration of $\{X_k : k \in \mathbb{N}\}$.

Theorem 1.14. Let P be a Markov kernel on $X \times X$ and μ a probability measure on (X, X). An X-valued stochastic process $\{X_k : k \in \mathbb{N}\}$ is a homogeneous Markov chain with kernel P and initial distribution μ if and only if for all $k \in \mathbb{N}$, the distribution X_0^k is $\mu \otimes P^{\otimes k}$.

Proof. We assume that $\{X_k : k \in \mathbb{N}\}$ is a homogeneous Markov chain with kernel P. Fix $k \in \mathbb{N}$ and let \mathcal{H}_k be the vector space of functions $h \in \mathsf{F}_\mathsf{b}(\mathcal{X}^{\otimes (k+1)})$ such that

$$\mathbb{E}\left[h(X_0^k)\right] = \mu \otimes P^{\otimes k}h. \tag{1.15}$$

We show that $\mathsf{F}_{\mathsf{b}}(\mathcal{X}^{\otimes(k+1)}) \subset \mathcal{H}_k$ using Theorem 1.29. We proceed by induction and assume that $\mathsf{F}_{\mathsf{b}}(\mathcal{X}^{\otimes k}) \subset \mathcal{H}_{k-1}$. Let $\mathcal{C} = \{A_0 \times \cdots \times A_k : A_j \in \mathcal{X}, 0 \leq j \leq k\}$. Note that \mathcal{C} is closed under finite intersections. To prove that $\mathbb{1}_A \in \mathcal{H}_k$ for all $A \in \mathcal{C}$, write, using

³Note that by monotone convergence, the same property will hold also for all $h \in \mathsf{F}_+(\mathcal{X}^{\otimes (n+1)})$.

Definition 1.13 and the induction hypothesis,

$$\mathbb{E}\left[\mathbb{1}_{A}(X_{0}^{k})\right] = \mathbb{E}\left[\prod_{i=0}^{k}\mathbb{1}_{A_{i}}(X_{i})\right]$$

$$= \mathbb{E}\left[\prod_{i=0}^{k-1}\mathbb{1}_{A_{i}}(X_{i})\mathbb{E}\left[\mathbb{1}_{A_{k}}(X_{k})\mid\mathcal{F}_{k-1}\right]\right]$$

$$= \mathbb{E}\left[\prod_{i=0}^{k-1}\mathbb{1}_{A_{i}}(X_{i})P\mathbb{1}_{A_{k}}(X_{k-1})\right]$$
(1.16)

$$= \mu \otimes P^{\otimes (k-1)} \left(\prod_{i=0}^{k-1} \mathbb{1}_{A_i} \times P \mathbb{1}_{A_k} \right)$$
 (1.17)

$$= \mu \otimes P^{\otimes k} \left(\prod_{i=0}^{k} \mathbb{1}_{A_i} \right). \tag{1.18}$$

In addition, let $\{h_n\}_{n\in\mathbb{N}^*}$ be a sequence of increasing functions in \mathcal{H}_k and let $h=\lim_{n\to\infty}h_n$. Then by using twice the monotone convergence theorem we conclude that $h\in\mathcal{H}_k$. (Indeed, proceed like

$$\mathbb{E}\left[h(X_0^k)\right] = \lim_{n \to \infty} \mathbb{E}\left[h_n(X_0^k)\right] = \lim_{n \to \infty} \mu \otimes P^{\otimes k} h_n = \mu \otimes P^{\otimes k} h,$$

where we used, in the last step, that $\mu \otimes P^{\otimes k}$ is a measure.) As the induction hypothesis is trivially true for k = 0, necessity follows by Theorem 1.29.

Conversely, assume that the identity (1.15) holds for all $k \in \mathbb{N}$ and $h \in \mathsf{F}_{\mathsf{b}}(\mathcal{X}^{\otimes (k+1)})$. Pick $k \in \mathbb{N}$ arbitrarily and show that for all $h \in \mathsf{F}_{\mathsf{b}}(\mathcal{X})$ and \mathcal{F}_{k-1} -measurable (with $\mathcal{F}_{k-1} = \sigma(X_j : j \leq k-1)$) bounded Y,

$$\mathbb{E}\left[Y(h(X_k) - Ph(X_{k-1}))\right] = 0 \Leftrightarrow \mathbb{E}\left[Yh(X_k)\right] = \mathbb{E}\left[YPh(X_{k-1})\right],\tag{1.19}$$

(implying that $\mathbb{E}[h(X_k) \mid \mathcal{F}_{k-1}] = Ph(X_{k-1}), \mathbb{P}\text{-a.s.}).$

Exercise 1.20. Establish (1.19).

Invariant measures and stationarity

Definition 1.21 (invariant/sub-invariant measure). Let P be a Markov kernel on $X \times \mathcal{X}$. A non-zero σ -finite measure $\mu \in M_+(\mathcal{X})$ is said to be invariant (or sub-invariant) with respect to P if $\mu P = \mu$ (or $\mu P \leq \mu$).

Note that we assume an invariant measure to be σ -finite. (Consider the case $X = \mathbb{R}$ and $P(x, A) = \delta_{x+1}(A)$ for all $A \in \mathcal{X} = \mathcal{B}(\mathbb{R})$. If μ is the counting measure, then $\mu P = \mu$ for all $A \in \mathcal{X}$. However, μ is not σ -finite.)

Recall that a stochastic process is $\{X_k : k \in \mathbb{N}\}$ on $(\Omega, \mathcal{X}, \mathbb{P})$ is stationary if for all $(k, p) \in \mathbb{N}^2$, the law of X_k^{k+p} does not depend on k.

Theorem 1.22. A Markov chain $\{(X_k, \mathcal{F}_k) : k \in \mathbb{N}\}\$ defined on $(\Omega, \mathcal{F}, \{\mathcal{F}_k : k \in \mathbb{N}\}, \mathbb{P})$ with kernel P on (X, \mathcal{X}) is a stationary process if and only if its initial distribution is invariant with respect to P.

Exercise 1.23. Prove Theorem 1.22.

Definition 1.24 (reversibility). Let P be a Markov kernel on $X \times \mathcal{X}$. A σ -finite measure ξ on \mathcal{X} is said to be reversible with respect to P if the measure $\xi \otimes P$ on $\mathcal{X}^{\otimes 2}$ is symmetric, i.e. for all $h \in \mathsf{F}_{\mathsf{b}}(\mathcal{X}^{\otimes 2})$,

$$\iint h(x, x') \, \xi(\mathrm{d}x) \, P(x, \mathrm{d}x') = \iint h(x', x) \, \xi(\mathrm{d}x) \, P(x, \mathrm{d}x'). \tag{1.25}$$

Note that if $\{X_k : k \in \mathbb{N}\}$ is a Markov chain with kernel P and initial distribution ξ , then the reversibility condition (1.25) means that $\mathbb{E}_{\xi}[h(X_0, X_1)] = \mathbb{E}_{\xi}[h(X_1, X_0)]$.

Exercise 1.26. Show that if ξ is reversible with respect to P, then ξ is invariant with respect to P.

Example 1.27 (the Metropolis-Hastings algorithm). Markov chain Monte Carlo (MCMC) is a general method for simulating from distributions known up to a constant of proportionality. Let ν be a (σ -finite) measure on some state space (X, \mathcal{X}) and let $h \in F_+(\mathcal{X})$ such that $0 < \int h(x) \nu(dx) < \infty$. Assume for simplicity that h is positive and define the distribution

$$\pi: \mathcal{X} \ni A \mapsto \frac{\int_A h(x) \, \nu(\mathrm{d}x)}{\int h(x) \, \nu(\mathrm{d}x)}.$$

The Metropolis-Hastings (MH) algorithm generates a Markov chain $\{X_k : k \in \mathbb{N}\}$ with invariant measure π as follows. Let $Q : \mathsf{X} \times \mathcal{X} \to [0,1]$ be a proposal kernel with positive kernel density $q \in \mathsf{F}_+(\mathcal{X}^2)$ with respect to ν , i.e., for all $(x,A) \in \mathsf{X} \times \mathcal{X}$, $Q(x,A) = \int_A q(x,y) \nu(\mathrm{d}y)$. Given X_k , a candidate X_{k+1}^* is sampled from $Q(X_k,\cdot)$. With probability $\alpha(X_k,X_{k+1}^*)$, where

$$\alpha: \mathsf{X}^2 \ni (x,y) = 1 \land \frac{h(y)q(y,x)}{h(x)q(x,y)},$$

this proposal is accepted and the chain moves to $X_{k+1} = X_{k+1}^*$; otherwise, the candidate is rejected and the chain remains at $X_{k+1} = X_k$. Consequently, $\{X_k : k \in \mathbb{N}\}$ is a Markov chain with kernel

$$P: \mathsf{X} \times \mathcal{X} \ni (x, A) \mapsto \int_{A} \alpha(x, y) q(x, y) \, \nu(\mathrm{d}y) + \rho(x) \delta_x(A),$$

with

$$\rho: \mathsf{X} \ni x \mapsto \int \{1 - \alpha(x, y)\} q(x, y) \, \nu(\mathrm{d}y)$$

being the probability of rejection.

Exercise 1.28. Show that the target π is reversible with respect to the MH kernel P.

A The functional monotone class theorem

Theorem 1.29. Let \mathcal{H} be a vector space of bounded functions on Ω and \mathcal{C} a class of subsets of Ω stable by finite intersection. Assume that \mathcal{H} satisfies

- (i) $\mathbb{1}_{\Omega} \in \mathcal{H}$ and for all $A \in \mathcal{C}$, $\mathbb{1}_A \in \mathcal{H}$.
- (ii) If $\{f_n, n \in \mathbb{N}\}$ is an increasing sequence of functions of \mathcal{H} such that $\sup_{n \in \mathbb{N}} f_n = \lim_{n \to \infty} f_n = f$ is bounded, then $f \in \mathcal{H}$.

Then \mathcal{H} contains all the bounded $\sigma(\mathcal{C})$ -measurable functions.

References

[1] J. Jacod and P. Protter. *Probability Essentials*. Springer, 2000.