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Schedule
I A preliminary schedule is as follows:

Date Hours Room Topic
16/2 13-15 3418 Basic definitions
17/2 10-12 3418 The strong Markov property
1/3 15-17 3418 Exercise class
2/3 13-15 3418 Atomic chains
3/3 10-12 3418 Minorisation and splitting
15/3 15-17 3418 Exercise class
16/3 14-16 3721 General irreducible chains
17/3 13-15 3721 Ergodic theory
29/3 15-17 3418 Exercise class
30/3 15-17 3418 Central limit theorems
29/3 10-12 3418 Geometric ergodicity

I Course homepage:

https://www.math.kth.se/matstat/gru/sf3953/
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Literature

I The course will be based on lecture notes that will become
available after each lecture.

I Recommended literature:

Meyn, S. P. and Tweedie, R. L. (2009). Markov Chains and
Stochastic Stability, 2nd Ed. Cambridge University Press,
London.

The first edition is available online; see the course homepage
for a link.
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Examination

I The examination consists of two parts: home assignments and
an oral.

I Solutions to the home assignments, which consist of sets of
problems related to the theory presented in the lectures, are
handed in at the beginning of each exercise class (except the
last assignment).

I During the exercise classes the participants should be ready to
present, on the blackboard, solutions to all the problems.

I Collaboration is allowed, but solutions are handed in
individually.

I The oral treats all the theory developed in the lectures, and a
course participant qualifies to the oral by performing
sufficiently well on the home-assignment part of the course.
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Goal of this lecture

I Today we will
I Recall some basic definitions and theorems,
I Introduce transition kernels,
I define homogeneous Markov chains and some related concepts.
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Thousands and thousands of Markov chains. . .

I In this course, focus is set on the theory of general state-space
Markov chains (= discrete time). In particular, we are
interested in stochastic stability (recurrence, stationarity,
ergodicity).

I There is a rich literature on applications, including
I random walks,
I population models (birth-and-death processes, Wright-Fisher

models and Galton-Watson processes, Ehrenfest’s urn, . . . ),
I queueing and storage models,
I time series analysis (AR, INAR, self-exiting threshold AR,

ARCH, . . . ),
I observation-driven models (ARMA, GARCH, EGARCH,

TGARCH, . . . ),
I Markov chain Monte Carlo methods (Metropolis-Hastings

sampler, Gibbs sampler, . . . )
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Some background: filtrations

I We recall the following definitions.

Definition (filtration)
A filtration of a measurable space (Ω,F) is an increasing sequence
{Fk : k ∈ N} of sub-σ-fields of F .

Definition (filtered probability space)
A filtered probability space (Ω, {Fk : k ∈ N},F) is a probability
space endowed with a filtration.
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Some background: stochastic processes
I Let T be some set and (X,X ) some measurable space.

Definition (stochastic process)
A family of X-valued random variables indexed by T is called an
X-valued stochastic process indexed by T . (In this course, T = N
or T = Z.)

Definition (adapted stochastic process)
A stochastic process {Xk : k ∈ N} is said to be adapted to the
filtration {Fk : k ∈ N} if for each k ∈ N, Xk is Fk -measurable.
(Notation: {(Xk ,Fk) : k ∈ N})

Definition (natural filtration)
The natural filtration of a stochastic process {Xk : k ∈ N} defined
on a probability space (Ω,P,F) is the filtration {FX

k : k ∈ N}
defined by

FX
k = σ(Xj : j ∈ N, j ≤ k), k ∈ N.
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Some background: monotone convergence

I During this first lecture, we will use repeatedly the following
classical theorem.

Theorem (monotone convergence)
Let (X,X , µ) be a measure space and {fn : n ∈ N∗} be a sequence
of measurable functions on X such that for all x ∈ X,

(i) 0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ ∞,
(ii) f (x) = limn→∞ fn(x).

Then ∫
f (x)µ(dx) = lim

n→∞

∫
fn(x)µ(dx).
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Some background: monotone classes

Definition
Let Ω be a set. A collectionM of subsets of Ω is called a
monotone class if
(i) Ω ∈M,
(ii) for A ∈M and B ∈M such that A ⊂ B , B \ A ∈M.
(iii) for all increasing sequences {An : n ∈ N∗} of sets inM,
∪∞n=1An ∈M.

Theorem (the monotone class theorem)
LetM be a monotone class and assume that E ⊂M is stable by
finite intersection. Then σ(E) ⊂M.
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Some background: the functional monotone class theorem

I In addition, the following theorem will be highly useful, in
particular in combination with the monotone convergence
theorem.

Theorem (the functional monotone class theorem)
Let H be a vector space of bounded functions on Ω and C a class of
subsets of Ω stable by finite intersection. Assume that H satisfies

(i) 1Ω ∈ H and for all A ∈ C, 1A ∈ H.
(ii) If {fn, n ∈ N} is an increasing sequence of functions of H such

that supn∈N fn = limn→∞ fn = f is bounded, then f ∈ H.

Then H contains all the bounded σ(C)-measurable functions.
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