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Goals of this lecture

• Discuss the existence of Markov chains,

• Introduce some special stopping times of relevance for coming developments,

• Establish the strong Markov property.

Canonical chains

Assume that we are given a measurable space (X,X ), an initial distribution ν ∈ M1(X ), and
a Markov kernel P on X×X . Let XN be the set of X-valued sequences ω = (ω0, ω1, ω2, . . .).
The σ-field F = X�N is generated by the algebra A of cylindrical sets of form

∞∏
n=0

An,

where An ∈ X for all n ∈ N and An 6= X for at most finitely many n.

Definition 2.1 (coordinate process). The coordinate process {Xk : k ∈ N} is the stochastic
process defined on (XN,X�N) by

Xk(ω) = ωk, ω ∈ XN.

A point ω ∈ XN is called a trajectory or path.

With {Xk : k ∈ N} being the coordinate process, we set, for all n ∈ N, Fn = σ(Xm :
m ≤ n).

Theorem 2.2. Let (X,X ) be a measurable space and P a Markov kernel on X × X . For
every µ ∈ M1(X ) there exists a unique probability measure Pµ on the canonical space
(Ω,F) = (XN,X�N) such that the coordinate process {Xn : n ∈ N} is a Markov chain with
kernel P and initial distribution µ.

The proof, which is based on Caratheodory’s extension theorem (Theorem 2.17), is
rather technical and is hence beyond the scope of the course. Still, for the sake of com-
pleteness, the interested reader find a version of the proof Appendix A.
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Definition 2.3. The canonical Markov chain with kernel P on X × X is the coordinate
process {Xn : n ∈ N} on the canonical filtered space (XN,X�N, {FXk : k ∈ N}) endowed
with the family {Pν : ν ∈ M1(X )} of probability measures given by Theorem 2.2.

Note that with the canonical Markov chain comes a family of probability measures.
In the following, “a Markov chain with kernel P on X × X” will always refer to the

canonical chain.
For x ∈ X, we introduce the short-hand notation Px = Pδx (and similarly for expecta-

tions).

Proposition 2.4. For all A ∈ X�N,

(i) the function X 3 x 7→ Px(A) belongs to Fb(X ),

(ii) for all µ ∈ M1(X ), Pµ(A) =
∫
Px(A)µ(dx).

Exercise 2.5. In order to prove Proposition 2.4, show that the family M of sets A ∈ X�N

satisfying (i) and (ii) is a monotone class (see Definition 2.20). Now, conclude the proof
of the proposition using the monotone class theorem, Theorem 2.21, in combination with
Theorem 1.14 (last time).

Stopping times

In the following, consider a filtered probability space (Ω,F , {Fk : k ∈ N},P) and an adapted
process {(Xn,Fn) : n ∈ N}. Define F∞ as the σ-field generated by the union of all the
{Fk : k ∈ N}.

We recall the following definition.

Definition 2.6 (stopping time).

(i) A random variable τ from Ω to N̄ = N ∪ {∞} is called a stopping time if for all
k ∈ N, {τ ≤ k} ∈ Fk.

(ii) The stopping time σ-field Fτ is generated by the sets A ⊂ Ω such that for all k ∈ N,
A ∩ {τ ≤ k} ∈ Fk.

It is easily checked that

• Fτ is indeed a σ-field,

• a constant τ(ω) = n ∈ N is a stopping time (in which case Fτ = Fn),

• the event {τ =∞} belongs to F∞.
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Given the stochastic process {Xn : n ∈ N} and some arbitrary F∞-measurable random
variable X∞ we define

Xτ = Xk on {τ = k}, k ∈ N̄.

Note that Xτ is Fτ -measurable, since for A ∈ Fτ ,

{Xτ ∈ A} ∩ {τ ≤ k} =

k⋃
`=0

{Xτ ∈ A} ∩ {τ = `} =

k⋃
`=0

{X` ∈ A} ∩ {τ = `}

=
k⋃
`=0

{X` ∈ A} ∩ ({τ ≤ `} \ {τ ≤ `− 1}) ∈ Fk.

2.1 The shift operator and the strong Markov property

Definition 2.7. The mapping XN → XN defined by

θ : ω = (ω0, ω2, . . .) 7→ θ(ω) = (ω1, ω2, . . .)

is called the shift operator.

Multiple shift operators are defined recursively by letting θ0 be the identity function
(i.e., θ0(ω) = ω for all ω ∈ Ω) and for k ∈ N∗,

θk = θ ◦ θk−1.

Thus, each θk shifts a sequence k times.
Now, let {Xk : k ∈ N} be the coordinate process on XN. Then for all (j, k) ∈ N2,

Xk ◦ θj = Xj+k.

Exercise 2.8. Let {Fk : k ∈ N} be the natural filtration of the coordinate process. Show
that for all (m, k) ∈ N2 such that m ≥ k, θk is measurable from (XN,Fm) to (XN,Fm−k).

Exercise 2.9. Let {Fk : k ∈ N} be the natural filtration of the coordinate process {Xk :
k ∈ N} and τ and σ stopping times with respect to {Fk : k ∈ N}. Show that

(a) for each positive integer k ∈ N, k + τ ◦ θk is a stopping time.

(b) the random variable ρ = σ+ τ ◦ θσ is a stopping time. Moreover, if σ and τ are finite,
then Xτ ◦ θσ = Xρ.

From now on, a Markov kernel P on X × X is given, and we let {Xk : k ∈ N} be
the canonical chain with Markov kernel P on (Ω,F) = (XN,X�N). This means that
{Fk : k ∈ N} is the natural filtration of {Xk : k ∈ N}. In addition, Pµ denotes the law
induced by µ ∈ M1(X ) and Eµ stands for the associated expectation operator.
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Theorem 2.10 (Markov property). For all F-measurable positive or bounded random
variables Y , initial distributions µ ∈ M1(X ) and k ∈ N, it holds, Pµ-a.s., that

Eµ [Y ◦ θk | Fk] = EXk [Y ] . (2.11)

Proof. We use the functional monotone class theorem (see previous lecture). Let H be
set of bounded F-measurable random variables Y such that (2.11) holds. One proves
straightforwardly that H is a vector space (as the property (2.11) involves expectations).
Now, let E be the set of finite rectangles in Ω = XN, which is closed under finite intersection.
To prove that 1A ∈ H for all A ∈ E , we prove more generally that every Y of form
Y = g(X0, . . . , Xp), where g ∈ Fb(X p+1), belongs to H. We want to prove an identity for
conditional expectations; thus, pick arbitrarily a bounded Fk-measurable random variable
Z and prove that

Eµ [Z(Y ◦ θk − EXk [Y ])] = 0.

By the factorisation lemma there exists a measurable function z such that Z = z(X0, . . . , Xk).
Moreover, by Theorem 1.14 and the Fubini-Tonelli theorems,

Eµ[Z(Y ◦ θk)] = Eµ [z(X0, . . . , Xk)g(Xk, . . . , Xk+p)]

=

∫
· · ·
∫
z(x0, . . . , xk)g(xk, . . . , xk+p)µ(dx0)

k+p−1∏
`=0

P (x`, dx`+1)

=

∫
· · ·
∫

(δxk � P�pg)z(x0, . . . , xk)µ(dx0)
k−1∏
`=0

P (x`, dx`+1)

=

∫
· · ·
∫

Exk [Y ]z(x0, . . . , xk)µ(dx0)
k−1∏
`=0

P (x`,dx`+1)

= Eµ [Z EXk [Y ]] ,

which was to be established. To check the second condition of the functional monotone
class theorem, let {Yn : n ∈ N} be an increasing sequence of random variables in H and
denote by Y = limn→∞ Yn the pointwise limit. Then, using monotone convergence (also
for conditional expectations) and (2.11), Pµ-a.s.,

Eµ [Y ◦ θk | Fk] = lim
n→∞

Eµ[Yn ◦ θk | Fk] = lim
n→∞

EXk [Yn] = EXk [Y ] ,

which shows that Y ∈ H. We may now conclude the proof by applying the monotone class
theorem.

Importantly, the Markov property of Theorem 2.10 can be extended to random time
shifts.
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Theorem 2.12 (strong Markov property). For all F-measurable positive or bounded ran-
dom variables Y , initial distribution ν ∈ M1(X ) and stopping time τ , it holds, P-a.s.,
that

Eµ
[
(Y ◦ θτ )1{τ<∞} | Fτ

]
= EXτ [Y ]1{τ<∞}. (2.13)

Proof. We will show that for all A ∈ Fτ ,

Eµ
[
(Y ◦ θτ )1{τ<∞}1A

]
= Eµ

[
EXτ [Y ]1{τ<∞}1A

]
.

For this purpose, consider, for k ∈ N, the related expectation

Eµ
[
(Y ◦ θτ )1A∩{τ=k}

]
= Eµ

[
(Y ◦ θk)1A∩{τ=k}

]
Since τ is a stopping time, {τ = k} ∈ Fk. Thus, by the tower property and Theorem 2.10,

Eµ
[
(Y ◦ θk)1A∩{τ=k}

]
= Eµ

[
Eµ [Y ◦ θk | Fk]1A∩{τ=k}

]
= Eµ

[
EXk [Y ]1A∩{τ=k}

]
.

Now, decompose, using monotone convergence, the original expectation of interest accord-
ing to

Eµ
[
(Y ◦ θτ )1{τ<∞}1A

]
=
∞∑
k=0

Eµ
[
(Y ◦ θk)1A∩{τ=k}

]
=
∞∑
k=0

Eµ
[
EXk [Y ]1A∩{τ=k}

]
=
∞∑
k=0

Eµ
[
EXτ [Y ]1A∩{τ=k}

]
= Eµ

[
EXτ [Y ]1A

∞∑
k=0

1{τ=k}

]
= Eµ

[
EXτ [Y ]1{τ<∞}1A

]
,

which establishes the claim.

Hitting times and return times

The following stopping times will play critical roles in the following:

Definition 2.14. The first hitting time τA and return time σA to some set A ∈ X of the
process {Xn : n ∈ N} are defined by

τA = inf{n ∈ N : Xn ∈ A},
σA = inf{n ∈ N∗ : Xn ∈ A},

respectively, where, by convention, inf ∅ =∞. The successive return times {σ(n)A : n ∈ N},
are defined inductively by σ

(0)
A = 0 and for all n ∈ N,

σ
(n+1)
A = inf

{
k ∈ N : k > σ

(n)
A , Xk ∈ A

}
.
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One shows easily that τA is a stopping time; indeed, write for m ∈ N,

{τA ≤ m} =
m⋃
`=0

{X` ∈ A},

where each event {X` ∈ A} belongs to F`. Thus, as F` ⊂ Fm, this shows that τA is a

stopping time. The return time σA is treated similarly. That {σ(n)A : n ∈ N} are stopping

times follows by inductive use of Exercise 2.9, as, if σ
(n−1)
A is finite, for all n ∈ N∗,

σ
(n)
A = σ

(n−1)
A + σA ◦ θσ(n−1)

A

.

A Proof of Theorem 2.2

Definition 2.15. A set function µ defined on an algebra A is said to be σ-additive if for
all collections {An : n ∈ N} of pairwise disjoint sets in A such that ∪∞n=0An ∈ A, it holds
that

µ

( ∞⋃
n=0

An

)
=
∞∑
n=0

µ(An). (2.16)

The proof of Theorem 2.2 relies on the following result, which is fundamental in measure
theory.

Theorem 2.17 (Caratheodory’s extension theorem). Let µ be some σ-additive, non-
negative set function on an algebra A on some set X. Then there exists a measure µ̄
on the σ-field generated by A. If µ is σ-finite, this extension is unique.

Proof of Theorem 2.2. Let A be the algebra of cylindrical sets generating X�N (i.e., A is
the family of sets of form A = An × XN, where An is a product of n + 1 sets in X ). We
define the set function

A 3 A 7→ µ� P�n(An).

Let {An : n ∈ N} be a collection of pairwise disjoint sets of A such that ∪∞n=0An ∈ A.
Using Caratheodory’s extension theorem, we must establish the σ-additivity (2.16). Since
∪∞n=0An ∈ A, there must exist n0 ∈ N such that ∪∞n=0An ∈ Fn0 (since the filtration is
generated by the coordinate process). For n ∈ N, set Bn = ∪∞k=n+1Ak. For all n ∈ N, there
exists kn ∈ N such that {Aj}nj=0 ⊂ Fkn . As the sets are pairwise disjoint, this implies that

Bn =

 n⋃
j=0

An

{

∩
∞⋃
k=0

Ak ∈ Fkn∨n0 .

Thus, we have a sequence {Bn : n ∈ N} of decreasing sets in A such that ∩∞n=0Bn = ∅, and
it is enough to show that

lim
n→∞

µ(Bn) = 0. (2.18)
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(Indeed, since µ is additive (as µ� P�n is a probability for all n), we may write

µ

( ∞⋃
k=0

Ak

)
= µ

(
Bn ∪

n⋃
k=0

An

)
= µ(Bn) +

n∑
k=0

µ(Ak);

thus, (2.18) implies (2.16).) Since for each n ∈ N there exists k(n) ∈ N such that Bn ∈ Fk(n)
and since the σ-fields Fn are increasing, we can assume that the sequence {Fk(n) : n ∈ N} is
also non-decreasing. Moreover, by repeating if necessary certain terms Bn in the sequence,
we can assume that k(n) = n, i.e., we can assume that Bn is Fn-measurable for all n ∈ N.

Assume that each Bn is of form Cn×XN and define for (k, n) ∈ N2 such that k ≤ n−1,

fnk : Xk+1 3 xk0 7→
∫
1Cn(xn0 )P�(n−k)(xk,dx

n
k+1),

which is X k+1-measurable, and let fnn = 1Cn . Recall that the sets {Bn : n ∈ N} are
decreasing; thus, for fixed k ∈ N, {fnk : n ∈ N, n ≥ k} are non-increasing functions.
(Indeed, since for all n ∈ N, Bn+1 ⊂ Bn, it follows that Cn+1 ⊂ Cn × X. Hence, for all
n ≥ k + 1 and xk0 ∈ Xk+1,

fn+1
k (xk0) =

∫
1Cn+1(xn+1

0 )P�(n+1−k)(xk, dx
n+1
k+1)

≤
∫
1Cn(xn0 )P�(n−k)(xk, dx

n
k+1) = fnk (xk0),

and, similarly, fk+1
k (xk0) ≤ 1Ck(xk0) = fkk (xk0).) Thus, for all k ∈ N, there are limits

gk = limn→∞ f
n
k , which are uniformly bounded by one. Note that by construction, µ(Bn) =

νfn0 . Moreover, by dominated convergence, νg0 = ν(limn→∞ f
n
0 ) = limn→∞ νf

n
0 , and

consequently we must prove that νg0 = 0.
We proceed by contraction. First note that for all large n and xk0 ∈ Xk+1,

fnk (xk0) =

∫∫
1Cn(xn0 )P (xk, dxk+1)P

�(n−k−1)(xk+1,dx
n
k+2)

=

∫
fnk+1(x

k+1
0 )P (xk,dxk+1).

Thus, by dominated convergence, for all k ∈ N and xk0 ∈ Xk+1,

gk(x
k
0) = lim

n→∞

∫
fnk+1(x

k+1
0 )P (xk,dxk+1) =

∫
lim
n→∞

fnk+1(x
k+1
0 )P (xk,dxk+1)

=

∫
gk+1(x

k+1
0 )P (xk,dxk+1). (2.19)
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Now assume that νg0 > 0; then, by (2.19),

0 < νg0 =

∫∫
g1(x

1
0) ν(dx0)P (x0,dx1),

which implies that there exists x̃10 ∈ X2 such that g1(x̃
1
0) > 0. This implies in turn, by

(2.19), that

0 < g1(x̃
1
0) =

∫∫
g2(x̃

1
0, x2)P (x̃1,dx2),

which implies that there exists x̃2 ∈ X such that g2(x̃
2
0) > 0, etc. In this way we construct

a sequence x̃ = {x̃n : n ∈ N} such that gn(x̃n0 ) > 0 for all n ∈ N. Now, since for all n ∈ N,
{f `n : ` ∈ N, n ≥ `} are non-increasing functions and gn the corresponding limit,

1Bn(x̃) = 1Cn(x̃n0 ) = fnn (x̃n0 ) ≥ gn(x̃n0 ) > 0.

Thus, for all n ∈ N, 1Bn(x̃) = 1, implying that x̃ ∈ ∩n∈NBn, which contradicts ∩n∈NBn = ∅.
Hence, limn→∞ µ(Bn) = 0, and since µ is finite we may conclude the proof by applying
Caratheodory’s theorem.

B The monotone class theorem

Definition 2.20. Let Ω be a set. A collection M of subsets of Ω is called a monotone
class if

(i) Ω ∈M,

(ii) for A ∈M and B ∈M such that A ⊂ B, B \A ∈M.

(iii) for all increasing sequences {An : n ∈ N∗} of sets in M, ∪∞n=1An ∈M.

Theorem 2.21 (monotone class theorem). Let M be a monotone class and assume that
E ⊂M is stable by finite intersection. Then σ(E) ⊂M.
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