SF3953 Markov Chains and Processes

Jimmy Olsson

Lecture 2 Stopping times and the strong Markov property

17 February 2017

イロト イロト イヨト イヨト

This lecture

Goals of this lecture

- Today we will
 - discuss briefly the existence of Markov chains,
 - introduce some special stopping times of relevance for coming developments,
 - establish the strong Markov property.

Some background: the coordinate process

- For a given measurable space (X, X), let X^N be the set of X-valued sequences ω = (ω₀, ω₁, ω₂, ...).
- ► The σ-field 𝓕 = 𝑋^{⊗ℕ} is generated by the algebra 𝑋 of cylindrical sets of form

$$\prod_{n=0}^{\infty} A_n,$$

where $A_n \in \mathcal{X}$ for all $n \in \mathbb{N}$ and $A_n \neq X$ for at most finitely many n.

Definition (coordinate process)

The coordinate process $\{X_k : k \in \mathbb{N}\}$ is the stochastic process defined on $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}})$ by

$$X_k(\omega) = \omega_k, \quad \omega \in \mathsf{X}^{\mathbb{N}}.$$

▶ When $\{X_k : k \in \mathbb{N}\}$ is the coordinate process, we set $\mathcal{F}_n = \sigma(X_m : m \leq n).$

4/6

Some background: stopping times

- Consider an adapted process {(X_k, F_k) : k ∈ N}. Define F_∞ as the σ-field generated by the union of all the {F_k : k ∈ N}.
- Definition (stopping time)
 - (i) A random variable τ from Ω to N
 = N ∪ {∞} is called a stopping time if for all k ∈ N, {τ ≤ k} ∈ F_k.
 - (ii) The stopping time σ -field \mathcal{F}_{τ} is generated by the sets $A \subset \Omega$ such that for all $k \in \mathbb{N}$, $A \cap \{\tau \leq k\} \in \mathcal{F}_k$.
 - It is easily checked that
 - \mathcal{F}_{τ} is indeed a σ -field,
 - a constant $\tau(\omega) = n \in \mathbb{N}$ is a stopping time (in which case $\mathcal{F}_{\tau} = \mathcal{F}_n$),
 - the event $\{\tau = \infty\}$ belongs to \mathcal{F}_{∞} .

5/6

Some background: stopping times (cont'd)

 Given the stochastic process {X_k : k ∈ N} and some arbitrary *F*_∞-measurable random variable X_∞ we define

$$X_{ au} = X_k$$
 on $\{ au = k\}, k \in \mathbb{\bar{N}}.$

• Note that X_{τ} is \mathcal{F}_{τ} -measurable, since for $A \in \mathcal{F}_{\tau}$,

$$egin{aligned} X_{ au} \in \mathcal{A}
ight\} &\cap \{ au \leq k\} \ &= igcup_{\ell=0}^k \{X_{ au} \in \mathcal{A}\} \cap \{ au = \ell\} \ &= igcup_{\ell=0}^k \{X_\ell \in \mathcal{A}\} \cap \{ au = \ell\} \ &= igcup_{\ell=0}^k \{X_\ell \in \mathcal{A}\} \cap \{ au \leq \ell\} \setminus \{ au \leq \ell-1\}) \in \mathcal{F}_k. \end{aligned}$$

6/6

・ロト ・四ト ・ヨト ・ヨト