
SF3953: Markov Chains and Processes Spring 2017

Lecture 3: Atomic Chains and Irreducibility

Lecturer: Jimmy Olsson March 2

Goals of this lecture

• Introduce the concept of phi-irreducibility describing the communication between
states and sets.

• Establish the transience-recurrence dichotomy for atomic chains.

• Introduce briefly Harris recurrence.

Irreducibility and transience/recurrence

For some given measurable space (X,X ) and some Markov kernel P on X × X , let {Xk :
k ∈ N} be the canonical chain with kernel P (as defined last time).

Definition 3.1 (accessible set). A set A ∈ X is said to be accessible for the kernel P (or,
P -accessible) if Px(σA <∞) > 0 for all x ∈ X.

Exercise 3.2. Show that A ∈ X is accessible if Px(σA <∞) > 0 for all x ∈ A{.

Definition 3.3 (phi-irreducibility). The transition kernel P (or, alternatively, the Markov
chain {Xk : k ∈ N} with transition kernel P ) is said to be phi-irreducible if there exists
φ ∈ M+(X ) such all A ∈ X with φ(A) > 0 are accessible. Such a measure is called an
irreducibility measure for P .

Example 3.4. Assume that X is countable. In this case, we say that a state x ∈ X leads
to another state y ∈ X, denoted x → y, if Px(σy < ∞) > 0. If x → y and y → x, x and
y are said to communicate, which is denoted x ↔ y. The transition kernel (or chain) is
called irreducible if x↔ y for all states (x, y) ∈ X2. Note that phi-irreducibility is weaker
than this notion of irreducibility (since all measures on ℘(X) are irreducibility measures if
the chain is irreducible). The concepts are however not equivalent.

Exercise 3.5. Find an example of a chain on a countable state space that is phi-irreducible
but not irreducible.
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In general there are many irreducibility measures. We will however show next that there
exist maximal irreducibility measures ψ, which are such that any irreducibility measure φ
is absolutely continuous with respect to ψ (i.e., for all A ∈ X , ψ(A) = 0⇒ φ(A) = 0). Our
construction of a maximal irreducibility measure for P is based on the so-called resolvent
kernel associated with P , which is, for η ∈ (0, 1), defined by

Kη : X×X 3 (x,A) 7→ (1− η)
∞∑
n=0

ηnPn(x,A).

Note that Kη is a Markov kernel for all η ∈ (0, 1).

Exercise 3.6.

(a) Assume that µ ∈ M+(X ) is invariant with respect to P . Show that µ is also invariant
with respect to Kη for all η ∈ (0, 1).

(b) Show that for all A ∈ X and η ∈ (0, 1),

{x ∈ X : Px (σA <∞) > 0} = {x ∈ X : Kη(x,A) > 0} .

Theorem 3.7. Let P be a transition kernel on X×X and let φ be an irreducibility measure
for P . Then for all η ∈ (0, 1), φη = φKη is a maximal irreducibility measure. In addition,

A ∈ X is accessible ⇔ φη(A) > 0. (3.8)

Proof. To show that φη is an irreducibility measure, let A ∈ X be such that φη(A) > 0. In
addition, let

Ā = {x ∈ X : Px (σA <∞) > 0} = {x ∈ X : Kη(x,A) > 0} ,

where the equality holds by Exercise 3.6(b). If φ(Ā) = 0, then Kη(·, A) = 0 φ-a.s., which
implies that φη(A) = φKη(A) = 0. Thus, if φη(A) > 0, then φ(Ā) > 0. Now, let
Ām = {x ∈ X : Px (σA <∞) > 1/m}, so that Ā = ∪∞m=1Ām. Thus, there exists m ∈ N∗
such that φ(Ām) > 0, and since φ is an irreducibility measure, Ām is accessible. Now,
using the strong Markov property, for all x ∈ X,

Px (σA <∞) ≥ Px
(
σĀm <∞, σĀm + σA ◦ σĀm <∞

)
= Px

(
σĀm <∞, σA ◦ σĀm <∞

)
= Ex

[
1{σĀm<∞}Ex

[
1{σA◦σĀm<∞} | FσĀm

] ]
= Ex

[
1{σĀm<∞}PXσĀm (σA <∞)

]
≥ 1

m
Px
(
σĀm <∞

)
> 0,
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implying that φη is an irreducibility measure, which is also the sufficiency in the equivalence
(3.8). To establish the other direction, note that for all m ∈ N and A ∈ X , by the monotone
convergence and Chapman-Kolmogorov theorems,∫

φη(dx) ηmPm(x,A) = (1− η)

∫
φ(dy)

∫ ∞∑
`=0

η`P `(y,dx) ηmPm(x,A)

= (1− η)

∫
φ(dy)

∞∑
`=0

η`+mP `+m(y,A) ≤ φKη(A) = φη(A),

showing that φηKη is absolutely continuous with respect to φη. Consequently, φη(A) = 0
implies that φηKη(A) = 0 and, by definition, that φη(Ā) = 0. Thus,

φη(Ā) > 0⇒ φη(A) > 0. (3.9)

Hence if A is accessible, in which case Ā = X, then φη(A) > 0, which is the necessity in
(3.8).

Finally, let φ̃ ∈ M+(X ) be some other irreducibility measure and A ∈ X such that
φ̃(A) > 0. Then A is accessible and the by previous, φη(A) > 0. Thus, φ̃ is absolutely
continuous with respect to φη, which completes the proof.

For A ∈ X , we define the occupation time ηA as the number of visits by {Xk : k ∈ N}
to A, i.e.,

ηA =
∞∑
k=0

1A(Xk) = 1A(X0) +
∞∑
n=1

1{σ(n)
A <∞}.

Definition 3.10 (recurrence and uniform transience). A set A ∈ X is called uniformly
transient if supx∈A Ex[ηA] <∞. It is called recurrent if Ex[ηA] =∞ for all x ∈ A.

For phi-irreducible transition kernels, the main result is the following recurrence-transience
dichotomy.

Claim 3.11 (the recurrence-transience dichotomy). Let P be a phi-irreducible Markov
kernel. Then either of the following statements holds true.

(i) Every accessible set is recurrent, in which case we call P recurrent.

(ii) There is a countable cover of X with uniformly transient sets, in which case we call
P transient.

During the coming lectures, we will establish Claim 3.11 under increasingly general
assumptions. We will next establish Claim 3.11 in the particular case where the chain
possesses an accessible atom (to be defined). Next time we will extend this result to the
general case using small—“atom-like”—sets and the famous splitting construction.
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Atomic chains

Definition 3.12. A set α ∈ X is called an atom if there exists ν ∈ M1(X ) such that
P (x,A) = ν(A) for all x ∈ α and A ∈ X .

Exercise 3.13. Show that if α ∈ X is an atom for P , then it is also an atom for Pn for
all n ∈ N.

For all x ∈ α, the common measure Pn(x, ·) is denoted Pn(α, ·). Similarly, we will
write Pα, etc.

The recurrence-transience dichotomy for atomic chains

We now establish the recurrence-transience dichotomy in the case of an accessible atom.

Theorem 3.14. Assume that {Xk : k ∈ N} possesses an accessible atom α ∈ X with
associated ν ∈ M1(X ). Then the following holds true.

(i) The chain is φ-irreducible, ν is an irreducibility measure, and a set A ∈ X is accessible
if and only if Pα(σA <∞) > 0.

(ii) The atom α is recurrent if and only if Pα(σα < ∞) = 1 and (uniformly) transient
otherwise; moreover, the chain is recurrent if α is recurrent and transient otherwise.

Proof. To prove (i), write for x ∈ X and A ∈ X , using the strong Markov property (last
time),

Px(σA <∞) ≥ Px(σα <∞, σA ◦ θσα <∞)

= Ex
[
1{σα<∞}Ex

[
1{σA◦θσα<∞} | Fσα

]]
= Ex

[
1{σα<∞}Eα

[
1{σA<∞}

]]
= Px (σα <∞)Pα (σA <∞) .

(3.15)

Now, assume that Pα(σA < ∞) > 0; then, since α is accessible, the previous bound
implies that Px(σA < ∞) > 0 for all x ∈ X, which means that A is accessible. On the
contrary, assume that A is accessible; then Px(σA <∞) > 0 for all x ∈ X, and in particular
Pα(σA <∞) > 0. This proves the last claim of (i). To prove the first claim, note that

Px(σA <∞) ≥ Px (σα <∞)Pα (σA <∞) ≥ Px (σα <∞)Pα (X1 ∈ A) = Px (σα <∞) ν(A).

Since α is accessible, this implies that ν is a φ-irreducibility measure for P .
We turn to (ii). Recall the definition of the successive hitting times and note that

Pα

(
σ

(n)
α <∞

)
= Pα

(
σ

(n−1)
α <∞, σα ◦ θσ(n−1)

α
<∞

)
.
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Thus, repeating the arguments of (3.15) yields for all n ∈ N∗,

Pα

(
σ

(n)
α <∞

)
= Pα

(
σ

(n−1)
α <∞

)
Pα (σα <∞) ,

implying, by iteration, Pα(σ
(n)
α <∞) = Pα(σα <∞)n. Consequently,

Eα [ηα] = 1 +
∞∑
n=1

Pα (σα <∞)n =
∞∑
n=0

Pα (σα <∞)n ,

from which we conclude that α is recurrent if and only if Pα(σα <∞) = 1. Otherwise, α
is uniformly transient.

We turn to the second part of (ii). First note that for all x ∈ X and A ∈ X ,

Px (σA <∞) =

∞∑
`=1

Px (σA = `) ≤
∞∑
`=1

Px (X` ∈ A) =

∞∑
`=1

P `(x,A). (3.16)

Assume that α is recurrent. Recall that the chain is recurrent if all accessible sets are
recurrent. Thus, let A be accessible and pick x ∈ A. Then by (3.16) there exists s ∈ N∗
such that P s(x,α) > 0. In addition, there exists t ∈ N∗ such that P t(α, A) > 0. Then, as
α is recurrent, using the Chapman-Kolmogorov theorem,

Ex [ηA] ≥
∞∑
n=1

P s+n+t(x,A) ≥
∞∑
n=1

∫
α

∫
α
P s(x,dx′)Pn(x′, dx′′)P t(x′′, A)

= P s(x,α)P t(α, A)
∞∑
n=1

Pn(α,α) =∞,

showing that the chain is recurrent.
Now, assume that α is transient. Then, since

ηα = ηα ◦ θτα1{τα<∞},

using the strong Markov property, for all x ∈ X,

Ex [ηα] = Ex
[
Ex
[
ηα ◦ θτα1{τα<∞} | Fτα

]]
= Ex

[
Eα [ηα]1{τα<∞}

]
= Px (τα <∞)Eα [ηα] ≤ Eα [ηα] <∞. (3.17)

For all j ∈ N∗, define Bj = {x ∈ X :
∑j

`=1 P
`(x,α) ≥ 1/j}; then, by (3.16), since α is

accessible, X = ∪∞j=1Bj . Now, note that for all (j, n) ∈ N∗2,

j

j∑
`=1

∫
Bj

Pn(x, dx′)P `(x′,α) = j

∫
Bj

Pn(x,dx′)

j∑
`=1

P `(x′,α)

≥ Pn(x,Bj) j inf
x′∈Bj

j∑
`=1

P `(x′,α) ≥ Pn(x,Bj).
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On the other hand,

j

j∑
`=1

∫
Bj

Pn(x, dx′)P `(x′,α) ≤ j
j∑
`=1

∫
Pn(x,dx′)P `(x′,α) = j

j∑
`=1

Pn+`(x,α).

Combining the last two inequalities yields, for all x ∈ X,

∞∑
n=1

Pn(x,Bj) ≤ j
j∑
`=1

∞∑
n=1

Pn+`(x,α) ≤ j2
∞∑
n=1

Pn(x,α),

where the right hand side is finite by (3.17). Hence, each Bj is transient, which completes
the proof.


