March 2

Lecture 3: Atomic Chains and Irreducibility

Lecturer: Jimmy Olsson

Goals of this lecture

- Introduce the concept of phi-irreducibility describing the communication between states and sets.
- Establish the transience-recurrence dichotomy for atomic chains.
- Introduce briefly Harris recurrence.

Irreducibility and transience/recurrence

For some given measurable space (X, \mathcal{X}) and some Markov kernel P on $X \times \mathcal{X}$, let $\{X_k : k \in \mathbb{N}\}$ be the canonical chain with kernel P (as defined last time).

Definition 3.1 (accessible set). A set $A \in \mathcal{X}$ is said to be accessible for the kernel P (or, P-accessible) if $\mathbb{P}_x(\sigma_A < \infty) > 0$ for all $x \in X$.

Exercise 3.2. Show that $A \in \mathcal{X}$ is accessible if $\mathbb{P}_x(\sigma_A < \infty) > 0$ for all $x \in A^{\complement}$.

Definition 3.3 (phi-irreducibility). The transition kernel P (or, alternatively, the Markov chain $\{X_k : k \in \mathbb{N}\}$ with transition kernel P) is said to be phi-irreducible if there exists $\phi \in M_+(\mathcal{X})$ such all $A \in \mathcal{X}$ with $\phi(A) > 0$ are accessible. Such a measure is called an irreducibility measure for P.

Example 3.4. Assume that X is countable. In this case, we say that a state $x \in X$ leads to another state $y \in X$, denoted $x \to y$, if $\mathbb{P}_x(\sigma_y < \infty) > 0$. If $x \to y$ and $y \to x$, x and y are said to communicate, which is denoted $x \leftrightarrow y$. The transition kernel (or chain) is called irreducible if $x \leftrightarrow y$ for all states $(x, y) \in X^2$. Note that phi-irreducibility is weaker than this notion of irreducibility (since all measures on $\wp(X)$ are irreducibility measures if the chain is irreducible). The concepts are however not equivalent.

Exercise 3.5. Find an example of a chain on a countable state space that is phi-irreducible but not irreducible.

In general there are many irreducibility measures. We will however show next that there exist maximal irreducibility measures ψ , which are such that any irreducibility measure ϕ is absolutely continuous with respect to ψ (i.e., for all $A \in \mathcal{X}$, $\psi(A) = 0 \Rightarrow \phi(A) = 0$). Our construction of a maximal irreducibility measure for P is based on the so-called resolvent kernel associated with P, which is, for $\eta \in (0, 1)$, defined by

$$K_{\eta} : \mathsf{X} \times \mathcal{X} \ni (x, A) \mapsto (1 - \eta) \sum_{n=0}^{\infty} \eta^n P^n(x, A).$$

Note that K_{η} is a Markov kernel for all $\eta \in (0, 1)$.

Exercise 3.6.

- (a) Assume that $\mu \in M_+(\mathcal{X})$ is invariant with respect to P. Show that μ is also invariant with respect to K_η for all $\eta \in (0, 1)$.
- (b) Show that for all $A \in \mathcal{X}$ and $\eta \in (0, 1)$,

$$\{x \in \mathsf{X} : \mathbb{P}_x (\sigma_A < \infty) > 0\} = \{x \in \mathsf{X} : K_\eta(x, A) > 0\}.$$

Theorem 3.7. Let P be a transition kernel on $X \times X$ and let ϕ be an irreducibility measure for P. Then for all $\eta \in (0, 1)$, $\phi_{\eta} = \phi K_{\eta}$ is a maximal irreducibility measure. In addition,

$$A \in \mathcal{X} \text{ is accessible } \Leftrightarrow \phi_n(A) > 0.$$
 (3.8)

Proof. To show that ϕ_{η} is an irreducibility measure, let $A \in \mathcal{X}$ be such that $\phi_{\eta}(A) > 0$. In addition, let

$$\bar{A} = \{ x \in \mathsf{X} : \mathbb{P}_x \, (\sigma_A < \infty) > 0 \} = \{ x \in \mathsf{X} : K_\eta(x, A) > 0 \} \,,$$

where the equality holds by Exercise 3.6(b). If $\phi(\bar{A}) = 0$, then $K_{\eta}(\cdot, A) = 0$ ϕ -a.s., which implies that $\phi_{\eta}(A) = \phi K_{\eta}(A) = 0$. Thus, if $\phi_{\eta}(A) > 0$, then $\phi(\bar{A}) > 0$. Now, let $\bar{A}_m = \{x \in \mathsf{X} : \mathbb{P}_x (\sigma_A < \infty) > 1/m\}$, so that $\bar{A} = \bigcup_{m=1}^{\infty} \bar{A}_m$. Thus, there exists $m \in \mathbb{N}^*$ such that $\phi(\bar{A}_m) > 0$, and since ϕ is an irreducibility measure, \bar{A}_m is accessible. Now, using the strong Markov property, for all $x \in \mathsf{X}$,

$$\begin{aligned} \mathbb{P}_{x}\left(\sigma_{A}<\infty\right) \geq \mathbb{P}_{x}\left(\sigma_{\bar{A}_{m}}<\infty,\sigma_{\bar{A}_{m}}+\sigma_{A}\circ\sigma_{\bar{A}_{m}}<\infty\right) &= \mathbb{P}_{x}\left(\sigma_{\bar{A}_{m}}<\infty,\sigma_{A}\circ\sigma_{\bar{A}_{m}}<\infty\right) \\ &= \mathbb{E}_{x}\left[\mathbbm{1}_{\{\sigma_{\bar{A}_{m}}<\infty\}}\mathbb{E}_{x}\left[\mathbbm{1}_{\{\sigma_{A}\circ\sigma_{\bar{A}_{m}}<\infty\}}\mid\mathcal{F}_{\sigma_{\bar{A}_{m}}}\right]\right] = \mathbb{E}_{x}\left[\mathbbm{1}_{\{\sigma_{\bar{A}_{m}}<\infty\}}\mathbb{P}_{X_{\sigma_{\bar{A}_{m}}}}\left(\sigma_{A}<\infty\right)\right] \\ &\geq \frac{1}{m}\mathbb{P}_{x}\left(\sigma_{\bar{A}_{m}}<\infty\right)>0,\end{aligned}$$

implying that ϕ_{η} is an irreducibility measure, which is also the sufficiency in the equivalence (3.8). To establish the other direction, note that for all $m \in \mathbb{N}$ and $A \in \mathcal{X}$, by the monotone convergence and Chapman-Kolmogorov theorems,

$$\int \phi_{\eta}(\mathrm{d}x) \, \eta^{m} P^{m}(x,A) = (1-\eta) \int \phi(\mathrm{d}y) \int \sum_{\ell=0}^{\infty} \eta^{\ell} P^{\ell}(y,\mathrm{d}x) \, \eta^{m} P^{m}(x,A)$$
$$= (1-\eta) \int \phi(\mathrm{d}y) \sum_{\ell=0}^{\infty} \eta^{\ell+m} P^{\ell+m}(y,A) \le \phi K_{\eta}(A) = \phi_{\eta}(A),$$

showing that $\phi_{\eta}K_{\eta}$ is absolutely continuous with respect to ϕ_{η} . Consequently, $\phi_{\eta}(A) = 0$ implies that $\phi_{\eta}K_{\eta}(A) = 0$ and, by definition, that $\phi_{\eta}(\bar{A}) = 0$. Thus,

$$\phi_{\eta}(\bar{A}) > 0 \Rightarrow \phi_{\eta}(A) > 0. \tag{3.9}$$

Hence if A is accessible, in which case $\overline{A} = X$, then $\phi_{\eta}(A) > 0$, which is the necessity in (3.8).

Finally, let $\tilde{\phi} \in \mathsf{M}_+(\mathcal{X})$ be some other irreducibility measure and $A \in \mathcal{X}$ such that $\tilde{\phi}(A) > 0$. Then A is accessible and the by previous, $\phi_{\eta}(A) > 0$. Thus, $\tilde{\phi}$ is absolutely continuous with respect to ϕ_{η} , which completes the proof.

For $A \in \mathcal{X}$, we define the *occupation time* η_A as the number of visits by $\{X_k : k \in \mathbb{N}\}$ to A, i.e.,

$$\eta_A = \sum_{k=0}^{\infty} \mathbb{1}_A(X_k) = \mathbb{1}_A(X_0) + \sum_{n=1}^{\infty} \mathbb{1}_{\{\sigma_A^{(n)} < \infty\}}.$$

Definition 3.10 (recurrence and uniform transience). A set $A \in \mathcal{X}$ is called uniformly transient if $\sup_{x \in A} \mathbb{E}_x[\eta_A] < \infty$. It is called recurrent if $\mathbb{E}_x[\eta_A] = \infty$ for all $x \in A$.

For phi-irreducible transition kernels, the main result is the following *recurrence-transience* dichotomy.

Claim 3.11 (the recurrence-transience dichotomy). Let P be a phi-irreducible Markov kernel. Then either of the following statements holds true.

- (i) Every accessible set is recurrent, in which case we call P recurrent.
- (ii) There is a countable cover of X with uniformly transient sets, in which case we call P transient.

During the coming lectures, we will establish Claim 3.11 under increasingly general assumptions. We will next establish Claim 3.11 in the particular case where the chain possesses an accessible *atom* (to be defined). Next time we will extend this result to the general case using *small*—"atom-like"—*sets* and the famous *splitting construction*.

Atomic chains

Definition 3.12. A set $\alpha \in \mathcal{X}$ is called an atom if there exists $\nu \in M_1(\mathcal{X})$ such that $P(x, A) = \nu(A)$ for all $x \in \alpha$ and $A \in \mathcal{X}$.

Exercise 3.13. Show that if $\alpha \in \mathcal{X}$ is an atom for P, then it is also an atom for P^n for all $n \in \mathbb{N}$.

For all $x \in \boldsymbol{\alpha}$, the common measure $P^n(x, \cdot)$ is denoted $P^n(\boldsymbol{\alpha}, \cdot)$. Similarly, we will write $\mathbb{P}_{\boldsymbol{\alpha}}$, etc.

The recurrence-transience dichotomy for atomic chains

We now establish the recurrence-transience dichotomy in the case of an accessible atom.

Theorem 3.14. Assume that $\{X_k : k \in \mathbb{N}\}$ possesses an accessible atom $\alpha \in \mathcal{X}$ with associated $\nu \in M_1(\mathcal{X})$. Then the following holds true.

- (i) The chain is ϕ -irreducible, ν is an irreducibility measure, and a set $A \in \mathcal{X}$ is accessible if and only if $\mathbb{P}_{\alpha}(\sigma_A < \infty) > 0$.
- (ii) The atom $\boldsymbol{\alpha}$ is recurrent if and only if $\mathbb{P}_{\boldsymbol{\alpha}}(\sigma_{\boldsymbol{\alpha}} < \infty) = 1$ and (uniformly) transient otherwise; moreover, the chain is recurrent if $\boldsymbol{\alpha}$ is recurrent and transient otherwise.

Proof. To prove (i), write for $x \in X$ and $A \in \mathcal{X}$, using the strong Markov property (last time),

$$\mathbb{P}_{x}(\sigma_{A} < \infty) \geq \mathbb{P}_{x}(\sigma_{\alpha} < \infty, \sigma_{A} \circ \theta_{\sigma_{\alpha}} < \infty) \\
= \mathbb{E}_{x} \left[\mathbb{1}_{\{\sigma_{\alpha} < \infty\}} \mathbb{E}_{x} \left[\mathbb{1}_{\{\sigma_{A} \circ \theta_{\sigma_{\alpha}} < \infty\}} \mid \mathcal{F}_{\sigma_{\alpha}} \right] \right] \\
= \mathbb{E}_{x} \left[\mathbb{1}_{\{\sigma_{\alpha} < \infty\}} \mathbb{E}_{\alpha} \left[\mathbb{1}_{\{\sigma_{A} < \infty\}} \right] \right] \\
= \mathbb{P}_{x} \left(\sigma_{\alpha} < \infty \right) \mathbb{P}_{\alpha} \left(\sigma_{A} < \infty \right).$$
(3.15)

Now, assume that $\mathbb{P}_{\alpha}(\sigma_A < \infty) > 0$; then, since α is accessible, the previous bound implies that $\mathbb{P}_x(\sigma_A < \infty) > 0$ for all $x \in X$, which means that A is accessible. On the contrary, assume that A is accessible; then $\mathbb{P}_x(\sigma_A < \infty) > 0$ for all $x \in X$, and in particular $\mathbb{P}_{\alpha}(\sigma_A < \infty) > 0$. This proves the last claim of (i). To prove the first claim, note that

$$\mathbb{P}_{x}(\sigma_{A} < \infty) \geq \mathbb{P}_{x}(\sigma_{\alpha} < \infty) \mathbb{P}_{\alpha}(\sigma_{A} < \infty) \geq \mathbb{P}_{x}(\sigma_{\alpha} < \infty) \mathbb{P}_{\alpha}(X_{1} \in A) = \mathbb{P}_{x}(\sigma_{\alpha} < \infty) \nu(A)$$

Since α is accessible, this implies that ν is a ϕ -irreducibility measure for P.

We turn to (ii). Recall the definition of the successive hitting times and note that

$$\mathbb{P}_{\boldsymbol{\alpha}}\left(\sigma_{\boldsymbol{\alpha}}^{(n)} < \infty\right) = \mathbb{P}_{\boldsymbol{\alpha}}\left(\sigma_{\boldsymbol{\alpha}}^{(n-1)} < \infty, \sigma_{\boldsymbol{\alpha}} \circ \theta_{\sigma_{\boldsymbol{\alpha}}^{(n-1)}} < \infty\right).$$

Thus, repeating the arguments of (3.15) yields for all $n \in \mathbb{N}^*$,

$$\mathbb{P}_{\alpha}\left(\sigma_{\alpha}^{(n)} < \infty\right) = \mathbb{P}_{\alpha}\left(\sigma_{\alpha}^{(n-1)} < \infty\right) \mathbb{P}_{\alpha}\left(\sigma_{\alpha} < \infty\right)$$

implying, by iteration, $\mathbb{P}_{\alpha}(\sigma_{\alpha}^{(n)} < \infty) = \mathbb{P}_{\alpha}(\sigma_{\alpha} < \infty)^n$. Consequently,

$$\mathbb{E}_{\boldsymbol{\alpha}}\left[\eta_{\boldsymbol{\alpha}}\right] = 1 + \sum_{n=1}^{\infty} \mathbb{P}_{\boldsymbol{\alpha}} \left(\sigma_{\boldsymbol{\alpha}} < \infty\right)^n = \sum_{n=0}^{\infty} \mathbb{P}_{\boldsymbol{\alpha}} \left(\sigma_{\boldsymbol{\alpha}} < \infty\right)^n,$$

from which we conclude that $\boldsymbol{\alpha}$ is recurrent if and only if $\mathbb{P}_{\boldsymbol{\alpha}}(\sigma_{\boldsymbol{\alpha}} < \infty) = 1$. Otherwise, $\boldsymbol{\alpha}$ is uniformly transient.

We turn to the second part of (ii). First note that for all $x \in X$ and $A \in \mathcal{X}$,

$$\mathbb{P}_x\left(\sigma_A < \infty\right) = \sum_{\ell=1}^{\infty} \mathbb{P}_x\left(\sigma_A = \ell\right) \le \sum_{\ell=1}^{\infty} \mathbb{P}_x\left(X_\ell \in A\right) = \sum_{\ell=1}^{\infty} P^\ell(x, A).$$
(3.16)

Assume that $\boldsymbol{\alpha}$ is recurrent. Recall that the chain is recurrent if all accessible sets are recurrent. Thus, let A be accessible and pick $x \in A$. Then by (3.16) there exists $s \in \mathbb{N}^*$ such that $P^s(x, \boldsymbol{\alpha}) > 0$. In addition, there exists $t \in \mathbb{N}^*$ such that $P^t(\boldsymbol{\alpha}, A) > 0$. Then, as $\boldsymbol{\alpha}$ is recurrent, using the Chapman-Kolmogorov theorem,

$$\mathbb{E}_{x}[\eta_{A}] \geq \sum_{n=1}^{\infty} P^{s+n+t}(x,A) \geq \sum_{n=1}^{\infty} \int_{\boldsymbol{\alpha}} \int_{\boldsymbol{\alpha}} P^{s}(x,\mathrm{d}x') P^{n}(x',\mathrm{d}x'') P^{t}(x'',A)$$
$$= P^{s}(x,\boldsymbol{\alpha}) P^{t}(\boldsymbol{\alpha},A) \sum_{n=1}^{\infty} P^{n}(\boldsymbol{\alpha},\boldsymbol{\alpha}) = \infty,$$

showing that the chain is recurrent.

Now, assume that α is transient. Then, since

$$\eta_{\alpha} = \eta_{\alpha} \circ \theta_{\tau_{\alpha}} \mathbb{1}_{\{\tau_{\alpha} < \infty\}},$$

using the strong Markov property, for all $x \in X$,

$$\mathbb{E}_{x}[\eta_{\alpha}] = \mathbb{E}_{x}\left[\mathbb{E}_{x}\left[\eta_{\alpha} \circ \theta_{\tau_{\alpha}}\mathbb{1}_{\{\tau_{\alpha} < \infty\}} \mid \mathcal{F}_{\tau_{\alpha}}\right]\right] = \mathbb{E}_{x}\left[\mathbb{E}_{\alpha}[\eta_{\alpha}]\mathbb{1}_{\{\tau_{\alpha} < \infty\}}\right] \\ = \mathbb{P}_{x}\left(\tau_{\alpha} < \infty\right)\mathbb{E}_{\alpha}[\eta_{\alpha}] \leq \mathbb{E}_{\alpha}[\eta_{\alpha}] < \infty. \quad (3.17)$$

For all $j \in \mathbb{N}^*$, define $B_j = \{x \in \mathsf{X} : \sum_{\ell=1}^j P^\ell(x, \boldsymbol{\alpha}) \ge 1/j\}$; then, by (3.16), since $\boldsymbol{\alpha}$ is accessible, $\mathsf{X} = \bigcup_{j=1}^\infty B_j$. Now, note that for all $(j, n) \in \mathbb{N}^{*2}$,

$$j\sum_{\ell=1}^{j} \int_{B_{j}} P^{n}(x, \mathrm{d}x') P^{\ell}(x', \alpha) = j \int_{B_{j}} P^{n}(x, \mathrm{d}x') \sum_{\ell=1}^{j} P^{\ell}(x', \alpha)$$
$$\geq P^{n}(x, B_{j}) j \inf_{x' \in B_{j}} \sum_{\ell=1}^{j} P^{\ell}(x', \alpha) \geq P^{n}(x, B_{j}).$$

On the other hand,

$$j\sum_{\ell=1}^{j}\int_{B_{j}}P^{n}(x,\mathrm{d}x')P^{\ell}(x',\boldsymbol{\alpha}) \leq j\sum_{\ell=1}^{j}\int P^{n}(x,\mathrm{d}x')P^{\ell}(x',\boldsymbol{\alpha}) = j\sum_{\ell=1}^{j}P^{n+\ell}(x,\boldsymbol{\alpha}).$$

Combining the last two inequalities yields, for all $x \in X$,

$$\sum_{n=1}^{\infty} P^n(x, B_j) \le j \sum_{\ell=1}^j \sum_{n=1}^{\infty} P^{n+\ell}(x, \boldsymbol{\alpha}) \le j^2 \sum_{n=1}^{\infty} P^n(x, \boldsymbol{\alpha}),$$

where the right hand side is finite by (3.17). Hence, each B_j is transient, which completes the proof.