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Lecture 4: Atomic Chains and Invariant Measures

Lecturer: Jimmy Olsson March 3

Goals of this lecture

• Establish that chains with recurrent atoms admit invariant measures.

• Introduce a notion of small sets.

It turns out that in the phi-irreducible recurrent case, a Markov kernel admits a unique
invariant measure.

Claim 4.1. A phi-irreducible recurrent transition kernel (or Markov chain) admits a unique
(up to a multiplicative constant) invariant measure.

In the light of Claim 4.1, it is natural to ask whether the kernel admits an invariant
probability measure. This leads to the following definition.

Definition 4.2 (positive/null chains). A phi-irreducible transition kernel (or Markov chain)
is called positive if it admits an invariant probability measure; otherwise it is called null.

During the coming lectures, we will establish Claim 4.1 under increasingly general
assumptions and derive conditions for positivity. We will first consider the special case
where the chain possesses an accessible atom.

Invariant measures and chains with accessible atoms

Let τ be a stopping time with respect to {Fk : k ∈ N} and define the occupation measure

λ : X 3 A 7→ Eµ

[
τ∑
k=1

1A(Xk)

]
.

Exercise 4.3.

(a) Show that for all τ and µ ∈ M1(X ), λ ∈ M+(X ).

(b) Show that for all f ∈ F+(X ),

λf = Eµ

[
τ∑
k=1

f(Xk)

]
.
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In the case where the chain possesses an accessible atom α, the occupation measure

λα : X 3 A 7→ Eα

[
σα∑
k=1

1A(Xk)

]

is especially interesting.

Theorem 4.4. Let α be an accessible atom for the transition kernel P . Then λα is sub-
invariant with respect to P . It is invariant if and only if the atom α is recurrent. In that
case, any nontrivial P -invariant measure µ with µ(α) <∞ is proportional to λα, and λα
is a maximal irreducibility measure.

Proof. In order to establish sub-invariance of λα, pick arbitrarily A ∈ X and write, using
Exercise 4.3(b), the Markov property, and monotone convergence,

λαP (A) = Eα

[
σα∑
n=1

P (Xn, A)

]
= Eα

[
σα∑
n=1

EXn [1A(X1)]

]

= Eα

[
σα∑
n=1

Eα [1A(X1) ◦ θn | Fn]

]
= Eα

[ ∞∑
n=1

1{σα≥n}Eα [1A(X1) ◦ θn | Fn]

]

=
∞∑
n=1

Eα

[
1{σα≥n}1A(X1) ◦ θn

]
= Eα

[
σα+1∑
n=2

1A(Xn)

]
.

Now, since always

σα+1∑
n=2

1A(Xn) =

σα∑
n=1

1A(Xn)− 1A(X1) + 1{σα<∞}1A(Xσα+1)

=

σα∑
n=1

1A(Xn)− 1A(X1) + 1{σα<∞}1A(X1) ◦ θσα ,

it holds that, using the strong Markov property,

λαP (A) = λα(A)− Pα(X1 ∈ A) + E
[
1{σα<∞}1A(X1) ◦ θσα

]
= λα(A)− Pα(X1 ∈ A) + Eα

[
1{σα<∞}EXσα [1A(X1)]

]
= λα(A)− Pα(X1 ∈ A) + Pα (σα <∞)Pα (X1 ∈ A)

= λα(A)− Pα(X1 ∈ A) [1− Pα (σα <∞)] ,

which shows that λα is sub-invariant for P . In addition, by Theorem 3.13(ii), λα is invariant
if and only if α is recurrent.

To prove the second part, assume without loss of generality that µ(α) > 0; otherwise,
prove the claim for µ+ λα for which µ(α) + λα(α) ≥ 1 (indeed, if there exists c > 1 such
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that for all A ∈ X , µ(A) + λα(A) = cλα(A), then µ(A) = λα(A)(c − 1)). Then, assume
that µ(α) = 1; otherwise, prove the claim for µ/µ(α).

We will next prove that λα is minimal in the sense that for all invariant measures µ
with µ(α) = 1, µ ≥ λα. This follows if for all n ∈ N∗ and A ∈ X ,

µ(A) ≥ Eα

[
σα∧n∑
k=1

1A(Xk)

]
, (4.5)

which we prove by induction. For n = 1, write

µ(A) = µP (A) ≥
∫
α
P (x,A)µ(dx) = µ(α)P (α, A) = P (α, A) = Pα(X1 ∈ A),

which equals the right hand side of (4.5) for n = 1.
Now, assume that (4.5) holds true for some n ∈ N∗ and establish the same bound for

n ← n + 1. For this purpose, write, using the hypothesis and Exercise 4.3(b) (note that
the right hand side of (4.5) is an occupation measure),

µ(A) = µ(α)P (α, A) +

∫
α{
µ(dx)P (x,A)

≥ P (α, A) + Eα

[
σα∧n∑
k=1

1α{(Xk)P (Xk, A)

]

= P (α, A) +

n∑
k=1

Eα

[
1{σα≥k}1α{(Xk)P (Xk, A)

]
= P (α, A) +

n∑
k=1

Eα

[
1{σα≥k+1}P (Xk, A)

]
= . . .

Exercise 4.6. Complete the induction step!

Thus, µ ≥ λα.
We show that µ = λα. Indeed, assume that there exists A ∈ X such that µ(A) > λα(A).

However, for all η ∈ (0, 1), by Exercise 3.6(a), µ and λα are both invariant with respect to
Kη and by Exercise 3.6(b), Kη(x,α) > 0 for all x ∈ X. Thus,

1 = µ(α) = µKη(α) =

∫
A
Kη(x,α)µ(dx) +

∫
A{
Kη(x,α)µ(dx)

>

∫
A
Kη(x,α)λα(dx) +

∫
A{
Kη(x,α)λα(dx) = λαKη(α) = λα(α) = 1,

which is a contradiction.
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Finally, we show that λα is a maximal irreducibility measure. Let φ be an irreducibility
measure and put, for some η ∈ (0, 1), φη = φKη. By Theorem 3.7, φη is a maximal
irreducibility measure. We assume A ∈ X is such that φη(A) = 0 and show that λα(A) = 0,
implying that λα is an irreducibility measure. Nevertheless, in the proof of Theorem 3.7
it was shown that φηKη was absolutely continuous with respect to φη. Thus, φη(A) = 0
implies that φηKη(A) = 0, implying in turn, by Exercise 3.6(b), that Px(σA <∞) = 0 for
φη-a.a. x ∈ X. In particular Px(σA <∞) = 0 for φη-a.a. x ∈ α, which, since Pα(σA <∞)
is constant and φη(α) > 0, implies that Pα(σA <∞) = 0. Now,

λα(A) = Eα

[
1{σA=∞}

σα∑
k=1

1A(Xk)

]
=

∞∑
k=1

Eα

[
1{σA=∞}1{σα≤k}1A(Xk)

]
= 0,

from which it follows that λα is an irreducibility measure. By Theorem 3.7, λαKη is a
maximal irreducibility measure. On the other hand, by Exercise 3.6(a), λα is invariant
with respect to Kη, implying that λα = λαKη is maximal.

The proof is complete.


