Goals of this lecture

- Introduce small-"atom-like"-sets.
- Show how a general phi-irreducible Markov chain admitting a small set can be embedded into a larger, atomic split chain.

Small sets

In the following, let $(\mathrm{X}, \mathcal{X})$ be a measurable space.
Definition 5.1. Let P be a Markov kernel on $\mathrm{X} \times \mathcal{X}, \nu \in \mathrm{M}_{1}(\mathcal{X}), m \in \mathbb{N}^{*}$, and $\varepsilon \in(0,1]$. A set $C \in \mathcal{X}$ is called an (m, ε, ν)-small set for P, or simply a small set, if $\nu(C)>0$ and for all $x \in C$ and $A \in \mathcal{X}$,

$$
P^{m}(x, A) \geq \varepsilon \nu(A) .
$$

Note that

- if $\varepsilon=1$, then C is an atom for the kernel P^{m}.
- for all $x \in \mathrm{X},\{x\}$ is a small-but generally not accessible - set.
- if the state space is countable and P is irreducible (according to the definition in Example 3.4), then every finite set is small.

Proposition 5.2. Let $C \in \mathcal{X}$ be an accessible (m, ε, ν)-small set for the transition kernel P on $\mathrm{X} \times \mathcal{X}$. Then ν is an irreducibility measure.

Exercise 5.3. Prove Proposition 5.2.
Example 5.4 (the Metropolis-Hastings algorithm (cont.)). Reconsider the MetropolisHastings algorithm discussed in Exemple 1.27 and assume that $X=\mathbb{R}^{d}$ and that ν is Lebesgue measure on $\mathcal{X}=\mathcal{B}\left(\mathbb{R}^{d}\right)$. Then, if the target and proposal densities h and q are both continuous and positive, then every compact set $C \in \mathcal{X}$ with $\nu(C)>0$ is small. Indeed,
let $\sigma_{-}=\inf _{\left(x, x^{\prime}\right) \in C^{2}} q\left(x, x^{\prime}\right), \sigma^{+}=\sup _{x \in C} h(x) / \nu h$, and define for all $x \in C$ and $B \in \mathcal{X}$ such that $B \subset C$,

$$
R_{x}(B)=\left\{y \in B: \frac{h(y) q(y, x)}{h(x) q(x, y)}<1\right\} .
$$

Then for all $x \in C$ and B as above,

$$
\begin{aligned}
P(x, B) & \geq \int_{B} \alpha(x, y) q(x, y) \nu(\mathrm{d} y) \\
& \geq \int_{R_{x}(B)} \frac{h(y) q(y, x)}{h(x)} \nu(\mathrm{d} y)+\int_{B \backslash R_{x}(B)} q(x, y) \nu(\mathrm{d} y) \\
& \geq \frac{\sigma_{-}}{\sigma_{+}} \int_{R_{x}(B)} h(y) \nu(\mathrm{d} y)+\frac{\sigma_{-}}{\sigma_{+}} \int_{B \backslash R_{x}(B)} h(y) \nu(\mathrm{d} y) \\
& \geq \varepsilon \pi_{C}(B),
\end{aligned}
$$

where we have set $\varepsilon=\left(\sigma_{-} / \sigma_{+}\right) \int_{C} h\left(y^{\prime}\right) \nu\left(\mathrm{d} y^{\prime}\right)$ and defined the probability measure

$$
\pi_{C}: \mathcal{X} \ni A \mapsto \frac{\int_{A \cap C} h(y) \nu(\mathrm{d} y)}{\int_{C} h\left(y^{\prime}\right) \nu\left(\mathrm{d} y^{\prime}\right)}
$$

Hence, for all $A \in \mathcal{X}$ and $x \in C$,

$$
P(x, A) \geq P(x, A \cap C) \geq \varepsilon \pi_{C}(A \cap C)=\varepsilon \pi_{C}(A)
$$

which shows that C is $\left(1, \varepsilon, \pi_{C}\right)$-small for P.

Splitting

Suppose in the following that the chain admits a $(1, \varepsilon, \nu)$-small set $C \in \mathcal{X}$. On the basis of this set, define the residual kernel

$$
\begin{equation*}
R: \mathrm{X} \times \mathcal{X} \ni(x, A) \mapsto \frac{P(x, A)-\varepsilon \mathbb{1}_{C}(x) \nu(A)}{1-\varepsilon \mathbb{1}_{C}(x)} . \tag{5.5}
\end{equation*}
$$

Note that the 1 -smallness of C guarantees R to be Markovian.
We first extend the state space by letting $\check{\mathrm{X}}=\mathrm{X} \times\{0,1\}$ and $\check{\mathcal{X}}=\mathcal{X} \otimes \wp(\{0,1\})$. With each $\mu \in \mathrm{M}_{+}(\mathcal{X})$ we associate a measure

$$
\mu_{C}: \mathcal{X} \ni A \mapsto \mu(A \cap C)
$$

in $\mathrm{M}_{+}(\mathcal{X})$ as well as a split measure

$$
\begin{equation*}
\mu^{*}: \check{\mathcal{X}} \ni \check{A} \mapsto(1-\varepsilon) \int \mathbb{1}_{\check{A}}(x, 0) \mu_{C}(\mathrm{~d} x)+\int \mathbb{1}_{\check{A}}(x, 0) \mu_{C^{\complement}}(\mathrm{d} x)+\varepsilon \int \mathbb{1}_{\check{A}}(x, 1) \mu_{C}(\mathrm{~d} x) \tag{5.6}
\end{equation*}
$$

in $\mathrm{M}_{+}(\check{\mathcal{X}})$. Trivially, if $\mu \in \mathrm{M}_{1}(\mathcal{X})$, then $\mu^{*} \in \mathrm{M}_{1}(\check{\mathcal{X}})$. Note that for all $A \in \mathcal{X}$,

$$
\mu^{*}(A \times\{i\})= \begin{cases}(1-\varepsilon) \mu_{C}(A)+\mu_{C^{\mathrm{C}}}(A) & \text { if } i=0, \\ \varepsilon \mu_{C}(A) & \text { if } i=1,\end{cases}
$$

implying especially that $\mu^{*}(A \times\{0,1\})=\mu(A)$. Moreover, note that a split measure never assigns any mass to the set $C^{\complement} \times\{1\}$. Using the definition (5.6), we may split, naturally, also each kernel K on $\mathrm{X} \times \mathcal{X}$ according to

$$
K^{*}: \mathrm{X} \times \check{\mathcal{X}} \ni(x, \check{A}) \mapsto[K(x, \cdot)]^{*}(\check{A}) .
$$

We now extend P to a Markov kernel \check{P} on $(\check{\mathrm{X}}, \check{\mathcal{X}})$ as follows.

$$
\check{P}: \check{\mathrm{X}} \times \check{\mathcal{X}} \ni((x, i), \check{A}) \mapsto \begin{cases}R^{*}(x, \check{A}) & \text { if } i=0 \tag{5.7}\\ \nu^{*}(\check{A}) & \text { if } i=1\end{cases}
$$

Note that $\check{\boldsymbol{\alpha}}=\mathbf{X} \times\{1\}$ is an atom for \check{P} with respect to ν^{*}. For all $\check{\mu} \in \mathbf{M}_{1}(\check{\mathcal{X}})$, Theorem 2.2 provides a probability measure $\check{\mathbb{P}}_{\breve{\mu}}$ on the canonical space ($\left.\check{\mathrm{X}}^{\mathbb{N}}, \check{\mathcal{X}}^{\otimes \mathbb{N}}\right)$ under which the coordinate process, denoted by $\left\{\tilde{X}_{k}: k \in \mathbb{N}\right\}$, with, for each $k \in \mathbb{N}, \bar{X}_{k}=\left(X_{k}, D_{k}\right)$, and referred to as the split chain, is a Markov chain with kernel \check{P} and initial distribution $\check{\mu}$. We denote by $\left\{\check{\mathcal{F}}_{k}: k \in \mathbb{N}\right\}$ the natural filtration of $\left\{\check{X}_{k}: k \in \mathbb{N}\right\}$. In addition, we denote by $\left\{\check{\mathcal{F}}_{k}^{X}: k \in \mathbb{N}\right\}$ the natural filtration of the marginal process $\left\{X_{k}: k \in \mathbb{N}\right\}$ and set $\dot{\mathcal{F}}_{\infty}^{X}=\sigma\left(X_{k}: k \in \mathbb{N}\right)$.

The following exercise provides conceptual understanding of the dynamics of the split chain.

Exercise 5.8. Let $\check{x}=(x, d) \in \check{\mathrm{X}}$ and check that

- if $x \notin C$ and $d=0$, then $\check{\mathbb{P}}_{\tilde{x}}\left(X_{1} \in \cdot\right)=P(x, \cdot)$.
- if $x \in C$ and $d=0$, then $\check{\mathbb{P}}_{\check{x}}\left(X_{1} \in \cdot\right)=R(x, \cdot) .{ }^{1}$
- if $x \in C$ and $d=1$, then $\check{\mathbb{P}}_{\check{x}}\left(X_{1} \in \cdot\right)=\nu$.
- $\check{\mathbb{P}}_{\check{x}}$-a.s.,

$$
\check{\mathbb{P}}_{\check{x}}\left(D_{k}=i \mid \check{\mathcal{F}}_{k}^{X}\right)= \begin{cases}(1-\varepsilon) \mathbb{1}_{C}\left(X_{k}\right)+\mathbb{1}_{C^{\mathrm{c}}}\left(X_{k}\right) & \text { if } i=0, \\ \varepsilon \mathbb{1}_{C}\left(X_{k}\right) & \text { if } i=1 .\end{cases}
$$

Exercise 5.9. Show that for all $\mu \in \mathrm{M}_{1}(\mathcal{X})$,

$$
\mu^{*} \check{P}=(\mu P)^{*}
$$

[^0]The following is the main result of this lecture.
Theorem 5.10. Let P be a phi-irreducible transition kernel on $\mathrm{X} \times \mathcal{X}$, let $C \in \mathcal{X}$ be an accessible $(1, \varepsilon, \nu)$-small set for P, and let $\mu \in \mathrm{M}_{1}(\mathcal{X})$. Then for all $h \in \mathrm{~F}_{\mathrm{b}}(\mathcal{X})$ and all $k \in \mathbb{N}$,

$$
\begin{equation*}
\check{\mathbb{E}}_{\mu^{*}}\left[h\left(X_{k+1}\right) \mid \check{\mathcal{F}}_{k}^{X}\right]=\operatorname{Ph}\left(X_{k}\right), \quad \check{\mathbb{P}}_{\mu^{*}} \text {-a.s. } \tag{5.11}
\end{equation*}
$$

In addition, $\check{\mathbb{P}}_{\mu^{*}}\left(X_{0} \in \cdot\right)=\mu$.
Consequently, under $\check{\mathbb{P}}_{\mu^{*}}$, the marginal process $\left\{X_{k}: k \in \mathbb{N}\right\}$ is a Markov chain with respect to its natural filtration with kernel P and initial distribution μ. Now, let \mathbb{P}_{μ} be the unique law on $\left(\mathrm{X}^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}\right)$ under which the coordinate process, which we, by abuse of notation, denote $\left\{X_{k}: k \in \mathbb{N}\right\}$ as well, is a Markov chain with kernel P and initial distribution μ. Let $\left\{\mathcal{F}_{k}: k \in \mathbb{N}\right\}$ denote its natural filtration and set $\mathcal{F}_{\infty}=\sigma\left(X_{k}: k \in \mathbb{N}\right)$.

Since an $\check{\mathcal{F}}_{\infty}^{X}$-measurable random variable Y depends only on the X -component of each path, we may identify the same with an \mathcal{F}_{∞}-measurable random variable denoted, by abuse of notation, by the same symbol, Y. Theorem 5.10 implies the following result, which will be instrumental in the coming developments.
Exercise 5.12. Show that for all bounded $\check{\mathcal{F}}_{\infty}^{X}$-measurable Y,

$$
\begin{equation*}
\check{\mathbb{E}}_{\mu^{*}}[Y]=\mathbb{E}_{\mu}[Y] . \tag{5.13}
\end{equation*}
$$

Proof of Theorem 5.10. Pick $h \in \mathrm{~F}_{\mathrm{b}}(\mathcal{X})$. We show, using the functional monotone class theorem, that for all bounded $\check{\mathcal{F}}_{k}^{X}$-measurable Z,

$$
\begin{equation*}
\check{\mathbb{E}}_{\mu^{*}}\left[Z h\left(X_{k+1}\right)\right]=\check{\mathbb{E}}_{\mu^{*}}\left[Z P h\left(X_{k}\right)\right] . \tag{5.14}
\end{equation*}
$$

For this purpose, let \mathcal{H} be the vector space of bounded $\check{\mathcal{F}}_{k}^{X}$-measurable Z such that (5.14) holds true and let $\mathcal{C}=\left\{\cap_{j=0}^{k} X_{j}^{-1}\left(B_{j}\right): B_{j} \in \mathcal{X}, 0 \leq j \leq k\right\}$. We pick arbitrarily $A \in \mathcal{C}$ and show that $\mathbb{1}_{A}=\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right)$ belongs to \mathcal{H}. Write, using the Markov property and Exercise 5.8,

$$
\begin{align*}
\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) h\left(X_{k+1}\right)\right] & =\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \check{\mathbb{E}}_{\check{X}_{k}}\left[h\left(X_{1}\right)\right]\right] \\
& =\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C \times\{0\}}\left(\check{X}_{k}\right) R h\left(X_{k}\right)\right] \tag{5.15}\\
& +\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C \times\{1\}}\left(\check{X}_{k}\right) \nu h\right] \tag{5.16}\\
& +\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C^{C} \times\{0\}}\left(\check{X}_{k}\right) P h\left(X_{k}\right)\right] . \tag{5.17}
\end{align*}
$$

For the first term (5.15), write, using again the Markov property,

$$
\begin{align*}
& \check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C \times\{0\}}\left(\check{X}_{k}\right) R h\left(X_{k}\right)\right] \\
& =\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k-1} \mathbb{1}_{B_{j}}\left(X_{j}\right) \check{\mathbb{E}}_{\mu^{*}}\left[\mathbb{1}_{C \cap B_{k}}\left(X_{k}\right) \mathbb{1}_{\{0\}}\left(D_{k}\right) R h\left(X_{k}\right) \mid \check{\mathcal{F}}_{k-1}\right]\right] \\
& =\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k-1} \mathbb{1}_{B_{j}}\left(X_{j}\right) \check{\mathbb{E}}_{\check{X}_{k-1}}\left[\mathbb{1}_{C \cap B_{k}}\left(X_{1}\right) \mathbb{1}_{\{0\}}\left(D_{1}\right) R h\left(X_{1}\right)\right]\right] \\
& =\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k-1} \mathbb{1}_{B_{j}}\left(X_{j}\right) \check{\mathbb{E}}_{\check{X}_{k-1}}\left[\mathbb{1}_{C \cap B_{k}}\left(X_{1}\right) \check{\mathbb{P}}_{\check{X}_{k-1}}\left(D_{1}=0 \mid X_{1}\right) R h\left(X_{1}\right)\right]\right] . \tag{5.18}
\end{align*}
$$

Now, by Exercise 5.8, for all $\check{x} \in \check{\mathrm{X}}$,

$$
\mathbb{1}_{C \cap B_{k}}\left(X_{1}\right) \check{\mathbb{P}}_{\check{x}}\left(D_{1}=0 \mid X_{1}\right)=\mathbb{1}_{C \cap B_{k}}\left(X_{1}\right)(1-\varepsilon), \quad \check{\mathbb{P}}_{\check{x}} \text {-a.s. }
$$

and applying the previous identity and the Markov property to (5.18) yields

$$
\begin{equation*}
\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C \times\{0\}}\left(\check{X}_{k}\right) R h\left(X_{k}\right)\right]=(1-\varepsilon) \check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C}\left(X_{k}\right) R h\left(X_{k}\right)\right] . \tag{5.19}
\end{equation*}
$$

The terms (5.16) and (5.17) are treated similarly, yielding

$$
\begin{align*}
\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C \times\{1\}}\left(\check{X}_{k}\right) \nu h\right] & =\varepsilon \check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C}\left(X_{k}\right) \nu h\right], \tag{5.20}\\
\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C^{\mathbb{C}} \times\{0\}}\left(\check{X}_{k}\right) P h\left(X_{k}\right)\right] & =\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C^{\mathrm{C}}}\left(X_{k}\right) P h\left(X_{k}\right)\right] . \tag{5.21}
\end{align*}
$$

Finally, combining (5.19)-(5.21) provides, using the definition of the residual kernel,

$$
\begin{aligned}
\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) h\left(X_{k+1}\right)\right]=\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C}\left(X_{k}\right)\left\{(1-\varepsilon) R h\left(X_{k}\right)+\varepsilon \nu h\right\}\right] \\
+\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) \mathbb{1}_{C^{c}}\left(X_{k}\right) P h\left(X_{k}\right)\right]=\check{\mathbb{E}}_{\mu^{*}}\left[\prod_{j=0}^{k} \mathbb{1}_{B_{j}}\left(X_{j}\right) P h\left(X_{k}\right)\right],
\end{aligned}
$$

showing that $\mathbb{1}_{A} \in \mathcal{H}$.
It remains to show that for all increasing sequences $\left\{Z_{n}: n \in \mathbb{N}^{*}\right\} \subset \mathcal{H}$, also $Z=$ $\lim _{n \rightarrow \infty} Z_{n}$ belongs to \mathcal{H}. However, this follows by the monotone convergence theorem, since

$$
\check{\mathbb{E}}_{\mu^{*}}\left[Z h\left(X_{k+1}\right)\right]=\lim _{n \rightarrow \infty} \check{\mathbb{E}}_{\mu^{*}}\left[Z_{n} h\left(X_{k+1}\right)\right]=\lim _{n \rightarrow \infty} \check{\mathbb{E}}_{\mu^{*}}\left[Z_{n} P h\left(X_{k}\right)\right]=\check{\mathbb{E}}_{\mu^{*}}\left[Z P h\left(X_{k}\right)\right] .
$$

This completes the proof of (5.11).
Finally, since for all $A \in \mathcal{X}$,

$$
\check{\mathbb{P}}_{\mu^{*}}\left(X_{0} \in A\right)=\mu^{*}(A \times\{0,1\})=\mu(A),
$$

the last statement follows
Theorem 5.22. Under the assumptions of Theorem 5.10, $\check{\boldsymbol{\alpha}}=X \times\{1\}$ is an accessible atom and ν^{*} is an irreducibility measure for the split kernel \check{P}. More generally, if $B \in \mathcal{X}$ is accessible for P, then $B \times\{0,1\}$ is accessible for the split kernel.
Proof. We show that $\check{\boldsymbol{\alpha}}$ is accessible. For this purpose, let $x \in \mathrm{X}$ and write, using Exercise 5.8,

$$
\begin{aligned}
\check{\mathbb{P}}_{(x, 1)}\left(\sigma_{\check{\alpha}}<\infty\right) \geq \check{\mathbb{P}}_{(x, 1)}\left(X_{1} \in C, D_{1}\right. & =1) \\
& =\check{\mathbb{E}}_{(x, 1)}\left[\check{\mathbb{P}}_{(x, 1)}\left(D_{1}=1 \mid X_{1}\right) \mathbb{1}_{C}\left(X_{1}\right)\right]=\varepsilon \nu(C)>0 .
\end{aligned}
$$

In addition, using σ-additivity and Exercise 5.8,

$$
\begin{aligned}
& \check{\mathbb{P}}_{(x, 0)}\left(\sigma_{\check{\boldsymbol{\alpha}}}<\infty\right)=\sum_{\ell=1}^{\infty} \check{\mathbb{P}}_{(x, 0)}\left(\sigma_{\check{\boldsymbol{\alpha}}}=\ell\right) \geq \sum_{\ell=1}^{\infty} \check{\mathbb{P}}_{(x, 0)}\left(\sigma_{C \times\{0,1\}}=\ell, D_{\ell}=1\right) \\
&=\sum_{\ell=1}^{\infty} \check{\mathbb{E}}_{(x, 0)}\left[\check{\mathbb{P}}_{(x, 0)}\left(D_{\ell}=1 \mid \mathcal{F}_{\ell}^{X}\right) \mathbb{1}_{\left\{\sigma_{C \times\{0,1\}}=\ell\right\}}\right]=\varepsilon \sum_{\ell=1}^{\infty} \check{\mathbb{P}}_{(x, 0)}\left(\sigma_{C \times\{0,1\}}=\ell\right) \\
&=\varepsilon \check{\mathbb{P}}_{(x, 0)}\left(\sigma_{C \times\{0,1\}}<\infty\right) .
\end{aligned}
$$

It is enough to consider $x \notin C$, in which case $\left(\delta_{x}\right)^{*}=\delta_{(x, 0)}$. Now, using Exercise 5.12,

$$
\check{\mathbb{P}}_{(x, 0)}\left(\sigma_{\check{\alpha}}<\infty\right) \geq \varepsilon \mathbb{P}_{x}\left(\sigma_{C}<\infty\right)>0
$$

since C is accessible. It follows that $\check{\boldsymbol{\alpha}}$ is accessible and by Theorem 3.14, ν^{*} is an irreducibility measure for \check{P}.

By the previous, Theorem 3.7, and Proposition 5.2, for all $\eta \in(0,1), \nu K_{\eta}$ and $\nu^{*} \check{K}_{\eta}=$ $\left(\nu K_{\eta}\right)^{*}$ (the latter identity follows by monotone convergence) are maximal irreducibility measures for P and \check{P}, respectively. Thus, if $B \in \mathcal{X}$ is accessible for P, then

$$
\nu^{*} \check{K}_{\eta}(B \times\{0,1\})=\left(\nu K_{\eta}\right)^{*}(B \times\{0,1\})=\nu K_{\eta}(B)>0,
$$

which shows that $B \times\{0,1\}$ is accessible for \check{P}.

[^0]: ${ }^{1}$ Note that for all $x \notin C, P(x, \cdot)=R(x, \cdot)$, and the first two cases could hence be summarised using only the residual kernel. Nevertheless, we have chosen to write explicitly P in the first case for clarity.

