SF3953: Markov Chains and Processes Spring 2017

Lecture 5: Minorisation and Splitting

Lecturer: Jimmy Olsson March 16

Goals of this lecture

e Introduce small—“atom-like” —sets.

e Show how a general phi-irreducible Markov chain admitting a small set can be em-
bedded into a larger, atomic split chain.

Small sets

In the following, let (X, X') be a measurable space.

Definition 5.1. Let P be a Markov kernel on X x X, v € M1(X), m € N*, and € € (0, 1].
A set C € X is called an (m,e,v)-small set for P, or simply a small set, if v(C) > 0 and
forallz € C and A € X,

P"(xz,A) > ev(A).

Note that
— if e =1, then C is an atom for the kernel P™.
— for all z € X, {z} is a small—but generally not accessible—set.

— if the state space is countable and P is irreducible (according to the definition in Exam-
ple 3.4), then every finite set is small.

Proposition 5.2. Let C € X be an accessible (m,e,v)-small set for the transition kernel
P on X x X. Then v is an irreducibility measure.

Exercise 5.3. Prove Proposition 5.2.

Example 5.4 (the Metropolis-Hastings algorithm (cont.)). Reconsider the Metropolis-
Hastings algorithm discussed in Ezemple 1.27 and assume that X = R% and that v is
Lebesgue measure on X = B(Rd). Then, if the target and proposal densities h and q are
both continuous and positive, then every compact set C € X with v(C) > 0 is small. Indeed,
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let o = inf(, yyec q(x,2'), 7 = sup,ec h(x)/vh, and define for all x € C and B € X

such that B C C,
Rx(B):{yeB:;LW<1}.

Then for all x € C and B as above,

P(z,B) > /B a(z,y)a(z, ) v(dy)

h(y)aly, z)
. /R P )+ /B iy 0 v)
5 o= () vidy) + / h(y) v(dy)

9+ JR.(B) B\R.(B)
> enc(B),

where we have set e = (0_ /o) [, h(y') v(dy') and defined the probability measure

Sare h(y) v(dy)

Joh(y)v(dy)

o X DA

Hence, for all A€ X and x € C,
P(z,A) > P(z,ANC) > enc(ANC) = enc(A),

which shows that C' is (1,e,m¢)-small for P.

Splitting
Suppose in the following that the chain admits a (1,¢, v)-small set C € X'. On the basis of

this set, define the residual kernel

P(z,A) —elc(x)v(A)
1 —ele(x)

R:Xx X3 (z,A) — (5.5)

Note that the 1-smallness of C' guarantees R to be Markovian.
We first extend the state space by letting X = X x {0,1} and X = X ® p({0,1}). With
each u € M4 (X) we associate a measure

po : X 3 A pu(ANC)

in M4 (X) as well as a split measure

XA~ (1_5)/1/1(3570) uc(daz)—F/IlA(m,O) /,Lcc(dx)+€/]lA(x, 1) pe(dx) (5.6)
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in My (X). Trivially, if g € My(&), then u* € M;(X). Note that for all A € X,

« . 1—€McA —|—/L[;A ifi:(),
(i) = § U~ el el i

epc(A) ifi=1,
implying especially that p*(A x {0,1}) = p(A). Moreover, note that a split measure never
assigns any mass to the set CC x {1}. Using the definition (5.6), we may split, naturally,
also each kernel K on X x X according to

K*:Xx X3 (z,A) = [K(z,)]"(A).
We now extend P to a Markov kernel P on (X, X) as follows.

. R*(x,A) ifi=0,

P:Xx X3 ((x,i),A) — {u*(A) i1 (5.7)

Note that & = X x {1} is an atom for P with respect to v*. For all i € M;(X), Theorem 2.2
provides a probability measure IF’,; on the canonical space (XN,/‘E ®N) under which the
coordinate process, denoted by {X} : k € N}, with, for each k € N, X}, = (X}, Dy), and
referred to as the split chain, is a Markov chain with kernel P and initial distribution fi.
We denote by {F} : k € N} the natural filtration of {X}, : k € N}. In addition, we denote
by {FX : k € N} the natural filtration of the marginal process {X}, : k € N} and set
FX =0(Xg: k €N).

The following exercise provides conceptual understanding of the dynamics of the split
chain.

Exercise 5.8. Let & = (xz,d) € X and check that
—ifzx ¢ C and d =0, then Pz(X, € -) = P(x,-).
—ifr € C and d=0, then Pz(X; € -) = R(z,-).!

—ifz € C and d =1, then Pz(X; € )

V.

- P;-a.s.,
(1—e)le(Xk) + Lee(Xy) ifi=0,

oy
Ps (D=1 7%) {s]lc(Xk) ifi = 1.

Exercise 5.9. Show that for all p € M1 (X),

PP = (uP)".

'Note that for all ¢ C, P(x,-) = R(x,-), and the first two cases could hence be summarised using only
the residual kernel. Nevertheless, we have chosen to write explicitly P in the first case for clarity.
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The following is the main result of this lecture.

Theorem 5.10. Let P be a phi-irreducible transition kernel on X x X, let C' € X be an
accessible (1,e,v)-small set for P, and let p € My(X). Then for all h € Fy,(X) and all
keN,

B [h(Xp1) | Fi'] = Ph(Xy), Pu-as. (5.11)
In addition, P, (Xo € -) = pu.

Consequently, under ]IVDM*, the marginal process {Xj : k € N} is a Markov chain with
respect to its natural filtration with kernel P and initial distribution p. Now, let P, be
the unique law on (XN, X®N) under which the coordinate process, which we, by abuse
of notation, denote {Xj : k € N} as well, is a Markov chain with kernel P and initial
distribution p. Let {Fj : k € N} denote its natural filtration and set Foo = (X : k € N).

Since an ]:'o)g—measurable random variable Y depends only on the X-component of each
path, we may identify the same with an F,-measurable random variable denoted, by abuse
of notation, by the same symbol, Y. Theorem 5.10 implies the following result, which will
be instrumental in the coming developments.

Exercise 5.12. Show that for all bounded FX -measurable Y,
B« [Y]=E,[Y]. (5.13)

Proof of Theorem 5.10. Pick h € F,(X). We show, using the functional monotone class
theorem, that for all bounded }“,f -measurable Z,

Eyx [Zh(Xy41)] = Epe [ZPh(Xy)]. (5.14)

For this purpose, let ‘H be the vector space of bounded f,g( -measurable Z such that (5.14)
holds true and let C = {N%_ X "'(B;) : B; € X,0 < j < k}. We pick arbitrarily A € C
and show that 14 = H?:o 1,(X;) belongs to H. Write, using the Markov property and
Exercise 5.8,

k
Eue | [T 18, (X)A(Xp11) | = B | T] 18, (X)Ex, [h(X1)]
j=0 j

=B | [] 18, (X)) Mooy (Xi) RR(Xy) (5.15)

+ By H 15,(X;)1ox 1y (Xp)vh (5.16)

k
+ K, HILBj(Xj)]lCcX{O}(Xk)Ph(Xk) . (5.17)
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For the first term (5.15), write, using again the Markov property,

H 15,(X;)Lox oy (Xx) RR(X})

=K, H 15,(X;)Eu [Lons, (Xk) Loy (Dr) RR(X) | F—1]
=&, H 15,(X))Ex, | [Lons, (X1)1goy(D1)RA(X1)]
=B, H 1, (X))Ex, | [chan (X1)Bg, (D1 =0] Xl)Rh(Xl)] (5.18)
Now, by Exercise 5.8, for all & € X,
ﬂCmBk(Xl)]P’j (Dl =0 | Xl) = ﬂCan(Xl)(l — E), ]Ivl’i—a.s.,
and applying the previous identity and the Markov property to (5.18) yields
H ILB ]lcx{o}(Xk)Rh(Xk) 1 - 6 H ILB Ilc Xk)Rh(Xk)
(5.19)
The terms (5.16) and (5.17) are treated similarly, yielding
H 15,(X;) Loy (Xp)vh| = Ky De(Xy)vh| (5.20)

k
H Xj)Lee oy (Xi) PR(Xy) | =

Loo(Xo)Ph(Xe)| . (5.21)

"»’:1?? ﬁ;:h

Finally, combining (5.19)—(5.21) provides, using the definition of the residual kernel,

k
+E- | [[ 18, (X)) 1o (X) PR(XE) | =K, HILB DPh(XE)|
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showing that 14 € H.

It remains to show that for all increasing sequences {Z,, : n € N*} C H, also Z =
lim,,_,o Z,, belongs to H. However, this follows by the monotone convergence theorem,
since

By [Zh(Xi41)] = RILH;OE;L* [Znh(Xis1)] = RILH;OEu* (2, Ph(X3)] = B [ZPh(X3)] -

This completes the proof of (5.11).
Finally, since for all A € X,

P (Xo € A) = (A x {0, 1}) = p(4),
the last statement follows O

Theorem 5.22. Under the assumptions of Theorem 5.10, & = X x {1} is an accessible
atom and v* is an irreducibility measure for the split kernel P. More generally, if B € X
is accessible for P, then B x {0,1} is accessible for the split kernel.

Proof. We show that ¢& is accessible. For this purpose, let x € X and write, using Exer-
cise 5.8,

P, 1)(0a < 00) > P 1) (X1 € C,Dy =1)
=E( 1) [P (D1 = 1| X1)Le(X1)] = ev(C) > 0.
In addition, using o-additivity and Exercise 5.8,

oo

P(I,O) (0a < o0) = Zp(x 0) (o Z (2,0) on{o n=4D;= 1)
/=1 /=1
Z (.0) [IED w0y (De=1|F) ]l{UCX{O’l}:g}} e> P (ooxioy = 1)

=1 =1
= 5P(x,0) (JCX{O,I} < OO) .

It is enough to consider x ¢ C, in which case (5x)* - 5(%0). Now, using Exercise 5.12,
P(I,O)(Ud < 00) > eP; (00 < 00) >0,

since C' is accessible. It follows that & is accessible and by Theorem 3.14, v* is an irre-
ducibility measure for P.

By the previous, Theorem 3.7, and Proposition 5.2, for all n € (0,1), vK,, and V*Kn =
(vK,)* (the latter identity follows by monotone convergence) are maximal irreducibility
measures for P and P, respectively. Thus, if B € X is accessible for P, then

V'K, (B x {0,1}) = (vK,;))*(B x {0,1}) = vK,(B) > 0,
which shows that B x {0, 1} is accessible for P. O



