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Lecture 5: Minorisation and Splitting

Lecturer: Jimmy Olsson March 16

Goals of this lecture

• Introduce small—“atom-like”—sets.

• Show how a general phi-irreducible Markov chain admitting a small set can be em-
bedded into a larger, atomic split chain.

Small sets

In the following, let (X,X ) be a measurable space.

Definition 5.1. Let P be a Markov kernel on X×X , ν ∈ M1(X ), m ∈ N∗, and ε ∈ (0, 1].
A set C ∈ X is called an (m, ε, ν)-small set for P , or simply a small set, if ν(C) > 0 and
for all x ∈ C and A ∈ X ,

Pm(x,A) ≥ εν(A).

Note that

– if ε = 1, then C is an atom for the kernel Pm.

– for all x ∈ X, {x} is a small—but generally not accessible—set.

– if the state space is countable and P is irreducible (according to the definition in Exam-
ple 3.4), then every finite set is small.

Proposition 5.2. Let C ∈ X be an accessible (m, ε, ν)-small set for the transition kernel
P on X×X . Then ν is an irreducibility measure.

Exercise 5.3. Prove Proposition 5.2.

Example 5.4 (the Metropolis-Hastings algorithm (cont.)). Reconsider the Metropolis-
Hastings algorithm discussed in Exemple 1.27 and assume that X = Rd and that ν is
Lebesgue measure on X = B(Rd). Then, if the target and proposal densities h and q are
both continuous and positive, then every compact set C ∈ X with ν(C) > 0 is small. Indeed,
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let σ− = inf(x,x′)∈C2 q(x, x′), σ+ = supx∈C h(x)/νh, and define for all x ∈ C and B ∈ X
such that B ⊂ C,

Rx(B) =

{
y ∈ B :

h(y)q(y, x)

h(x)q(x, y)
< 1

}
.

Then for all x ∈ C and B as above,

P (x,B) ≥
∫
B
α(x, y)q(x, y) ν(dy)

≥
∫
Rx(B)

h(y)q(y, x)

h(x)
ν(dy) +

∫
B\Rx(B)

q(x, y) ν(dy)

≥ σ−
σ+

∫
Rx(B)

h(y) ν(dy) +
σ−
σ+

∫
B\Rx(B)

h(y) ν(dy)

≥ επC(B),

where we have set ε = (σ−/σ+)
∫
C h(y′) ν(dy′) and defined the probability measure

πC : X 3 A 7→
∫
A∩C h(y) ν(dy)∫
C h(y′) ν(dy′)

.

Hence, for all A ∈ X and x ∈ C,

P (x,A) ≥ P (x,A ∩ C) ≥ επC(A ∩ C) = επC(A),

which shows that C is (1, ε, πC)-small for P .

Splitting

Suppose in the following that the chain admits a (1, ε, ν)-small set C ∈ X . On the basis of
this set, define the residual kernel

R : X×X 3 (x,A) 7→ P (x,A)− ε1C(x)ν(A)

1− ε1C(x)
. (5.5)

Note that the 1-smallness of C guarantees R to be Markovian.
We first extend the state space by letting X̌ = X×{0, 1} and X̌ = X �℘({0, 1}). With

each µ ∈ M+(X ) we associate a measure

µC : X 3 A 7→ µ(A ∩ C)

in M+(X ) as well as a split measure

µ∗ : X̌ 3 Ǎ 7→ (1−ε)
∫
1Ǎ(x, 0)µC(dx)+

∫
1Ǎ(x, 0)µC{(dx)+ε

∫
1Ǎ(x, 1)µC(dx) (5.6)
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in M+(X̌ ). Trivially, if µ ∈ M1(X ), then µ∗ ∈ M1(X̌ ). Note that for all A ∈ X ,

µ∗(A× {i}) =

{
(1− ε)µC(A) + µC{(A) if i = 0,

εµC(A) if i = 1,

implying especially that µ∗(A×{0, 1}) = µ(A). Moreover, note that a split measure never
assigns any mass to the set C{ × {1}. Using the definition (5.6), we may split, naturally,
also each kernel K on X×X according to

K∗ : X× X̌ 3 (x, Ǎ) 7→ [K(x, ·)]∗(Ǎ).

We now extend P to a Markov kernel P̌ on (X̌, X̌ ) as follows.

P̌ : X̌× X̌ 3 ((x, i), Ǎ) 7→

{
R∗(x, Ǎ) if i = 0,

ν∗(Ǎ) if i = 1.
(5.7)

Note that α̌ = X×{1} is an atom for P̌ with respect to ν∗. For all µ̌ ∈ M1(X̌ ), Theorem 2.2
provides a probability measure P̌µ̌ on the canonical space (X̌N, X̌�N) under which the
coordinate process, denoted by {X̌k : k ∈ N}, with, for each k ∈ N, X̌k = (Xk, Dk), and
referred to as the split chain, is a Markov chain with kernel P̌ and initial distribution µ̌.
We denote by {F̌k : k ∈ N} the natural filtration of {X̌k : k ∈ N}. In addition, we denote
by {F̌Xk : k ∈ N} the natural filtration of the marginal process {Xk : k ∈ N} and set
F̌X∞ = σ(Xk : k ∈ N).

The following exercise provides conceptual understanding of the dynamics of the split
chain.

Exercise 5.8. Let x̌ = (x, d) ∈ X̌ and check that

– if x /∈ C and d = 0, then P̌x̌(X1 ∈ ·) = P (x, ·).

– if x ∈ C and d = 0, then P̌x̌(X1 ∈ ·) = R(x, ·).1

– if x ∈ C and d = 1, then P̌x̌(X1 ∈ ·) = ν.

– P̌x̌-a.s.,

P̌x̌
(
Dk = i | F̌Xk

)
=

{
(1− ε)1C(Xk) + 1C{(Xk) if i = 0,

ε1C(Xk) if i = 1.

Exercise 5.9. Show that for all µ ∈ M1(X ),

µ∗P̌ = (µP )∗.

1Note that for all x /∈ C, P (x, ·) = R(x, ·), and the first two cases could hence be summarised using only
the residual kernel. Nevertheless, we have chosen to write explicitly P in the first case for clarity.
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The following is the main result of this lecture.

Theorem 5.10. Let P be a phi-irreducible transition kernel on X × X , let C ∈ X be an
accessible (1, ε, ν)-small set for P , and let µ ∈ M1(X ). Then for all h ∈ Fb(X ) and all
k ∈ N,

Ěµ∗
[
h(Xk+1) | F̌Xk

]
= Ph(Xk), P̌µ∗-a.s. (5.11)

In addition, P̌µ∗(X0 ∈ ·) = µ.

Consequently, under P̌µ∗ , the marginal process {Xk : k ∈ N} is a Markov chain with
respect to its natural filtration with kernel P and initial distribution µ. Now, let Pµ be
the unique law on (XN,X�N) under which the coordinate process, which we, by abuse
of notation, denote {Xk : k ∈ N} as well, is a Markov chain with kernel P and initial
distribution µ. Let {Fk : k ∈ N} denote its natural filtration and set F∞ = σ(Xk : k ∈ N).

Since an F̌X∞-measurable random variable Y depends only on the X-component of each
path, we may identify the same with an F∞-measurable random variable denoted, by abuse
of notation, by the same symbol, Y . Theorem 5.10 implies the following result, which will
be instrumental in the coming developments.

Exercise 5.12. Show that for all bounded F̌X∞-measurable Y ,

Ěµ∗ [Y ] = Eµ [Y ] . (5.13)

Proof of Theorem 5.10. Pick h ∈ Fb(X ). We show, using the functional monotone class
theorem, that for all bounded F̌Xk -measurable Z,

Ěµ∗ [Zh(Xk+1)] = Ěµ∗ [ZPh(Xk)] . (5.14)

For this purpose, let H be the vector space of bounded F̌Xk -measurable Z such that (5.14)
holds true and let C = {∩kj=0X

−1
j (Bj) : Bj ∈ X , 0 ≤ j ≤ k}. We pick arbitrarily A ∈ C

and show that 1A =
∏k
j=0 1Bj (Xj) belongs to H. Write, using the Markov property and

Exercise 5.8,

Ěµ∗

 k∏
j=0

1Bj (Xj)h(Xk+1)

 = Ěµ∗

 k∏
j=0

1Bj (Xj)ĚX̌k
[h(X1)]


= Ěµ∗

 k∏
j=0

1Bj (Xj)1C×{0}(X̌k)Rh(Xk)

 (5.15)

+ Ěµ∗

 k∏
j=0

1Bj (Xj)1C×{1}(X̌k)νh

 (5.16)

+ Ěµ∗

 k∏
j=0

1Bj (Xj)1C{×{0}(X̌k)Ph(Xk)

 . (5.17)
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For the first term (5.15), write, using again the Markov property,

Ěµ∗

 k∏
j=0

1Bj (Xj)1C×{0}(X̌k)Rh(Xk)


= Ěµ∗

k−1∏
j=0

1Bj (Xj)Ěµ∗
[
1C∩Bk

(Xk)1{0}(Dk)Rh(Xk) | F̌k−1

] 
= Ěµ∗

k−1∏
j=0

1Bj (Xj)ĚX̌k−1

[
1C∩Bk

(X1)1{0}(D1)Rh(X1)
] 

= Ěµ∗

k−1∏
j=0

1Bj (Xj)ĚX̌k−1

[
1C∩Bk

(X1)P̌X̌k−1
(D1 = 0 | X1)Rh(X1)

] . (5.18)

Now, by Exercise 5.8, for all x̌ ∈ X̌,

1C∩Bk
(X1)P̌x̌ (D1 = 0 | X1) = 1C∩Bk

(X1)(1− ε), P̌x̌-a.s.,

and applying the previous identity and the Markov property to (5.18) yields

Ěµ∗

 k∏
j=0

1Bj (Xj)1C×{0}(X̌k)Rh(Xk)

 = (1− ε)Ěµ∗

 k∏
j=0

1Bj (Xj)1C(Xk)Rh(Xk)

 .
(5.19)

The terms (5.16) and (5.17) are treated similarly, yielding

Ěµ∗

 k∏
j=0

1Bj (Xj)1C×{1}(X̌k)νh

 = εĚµ∗

 k∏
j=0

1Bj (Xj)1C(Xk)νh

 , (5.20)

Ěµ∗

 k∏
j=0

1Bj (Xj)1C{×{0}(X̌k)Ph(Xk)

 = Ěµ∗

 k∏
j=0

1Bj (Xj)1C{(Xk)Ph(Xk)

 . (5.21)

Finally, combining (5.19)–(5.21) provides, using the definition of the residual kernel,

Ěµ∗

 k∏
j=0

1Bj (Xj)h(Xk+1)

 = Ěµ∗

 k∏
j=0

1Bj (Xj)1C(Xk){(1− ε)Rh(Xk) + ενh}


+ Ěµ∗

 k∏
j=0

1Bj (Xj)1C{(Xk)Ph(Xk)

 = Ěµ∗

 k∏
j=0

1Bj (Xj)Ph(Xk)

 ,
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showing that 1A ∈ H.
It remains to show that for all increasing sequences {Zn : n ∈ N∗} ⊂ H, also Z =

limn→∞ Zn belongs to H. However, this follows by the monotone convergence theorem,
since

Ěµ∗ [Zh(Xk+1)] = lim
n→∞

Ěµ∗ [Znh(Xk+1)] = lim
n→∞

Ěµ∗ [ZnPh(Xk)] = Ěµ∗ [ZPh(Xk)] .

This completes the proof of (5.11).
Finally, since for all A ∈ X ,

P̌µ∗(X0 ∈ A) = µ∗(A× {0, 1}) = µ(A),

the last statement follows

Theorem 5.22. Under the assumptions of Theorem 5.10, α̌ = X × {1} is an accessible
atom and ν∗ is an irreducibility measure for the split kernel P̌ . More generally, if B ∈ X
is accessible for P , then B × {0, 1} is accessible for the split kernel.

Proof. We show that α̌ is accessible. For this purpose, let x ∈ X and write, using Exer-
cise 5.8,

P̌(x,1)(σα̌ <∞) ≥ P̌(x,1)(X1 ∈ C,D1 = 1)

= Ě(x,1)

[
P̌(x,1)(D1 = 1 | X1)1C(X1)

]
= εν(C) > 0.

In addition, using σ-additivity and Exercise 5.8,

P̌(x,0) (σα̌ <∞) =
∞∑
`=1

P̌(x,0) (σα̌ = `) ≥
∞∑
`=1

P̌(x,0)

(
σC×{0,1} = `,D` = 1

)
=
∞∑
`=1

Ě(x,0)

[
P̌(x,0)

(
D` = 1 | FX`

)
1{σC×{0,1}=`}

]
= ε

∞∑
`=1

P̌(x,0)

(
σC×{0,1} = `

)
= εP̌(x,0)

(
σC×{0,1} <∞

)
.

It is enough to consider x /∈ C, in which case (δx)∗ = δ(x,0). Now, using Exercise 5.12,

P̌(x,0)(σα̌ <∞) ≥ εPx (σC <∞) > 0,

since C is accessible. It follows that α̌ is accessible and by Theorem 3.14, ν∗ is an irre-
ducibility measure for P̌ .

By the previous, Theorem 3.7, and Proposition 5.2, for all η ∈ (0, 1), νKη and ν∗Ǩη =
(νKη)

∗ (the latter identity follows by monotone convergence) are maximal irreducibility
measures for P and P̌ , respectively. Thus, if B ∈ X is accessible for P , then

ν∗Ǩη(B × {0, 1}) = (νKη)
∗(B × {0, 1}) = νKη(B) > 0,

which shows that B × {0, 1} is accessible for P̌ .


