
SF3953: Markov Chains and Processes Spring 2017

Lecture 7: Uniqueness of π, Dynamical Systems

Lecturer: Jimmy Olsson April 20

Goals of this lecture

• To find conditions guaranteeing that a Markov chain has a unique invariant proba-
bility measure.

• To start up a discussion on limit theorems for Markov chains by introducing some
basic concepts related to dynamical systems.

Kac’s formula and the existence of a unique π

As usual, let (X,X ) be some measurable space. Recall Definition 4.2 terming a phi-
irreducible chain positive if it admits an invariant probability measure.

Proposition 7.1 (Kac’s formula). Let P be a transition kernel on X× X that admits an
accessible small set C ∈ X such that

sup
x∈C

Ex [σC ] <∞. (7.2)

Then the following holds true.

(i) The chain is positive recurrent1, and the unique invariant probability measure π sat-
isfies Kac’s formula, i.e., for all A ∈ X ,

π(A) =

∫
C
π(dy)Ey

[
σC−1∑
k=0

1A(Xk)

]
=

∫
C
π(dy)Ey

[
σC∑
k=1

1A(Xk)

]
. (7.3)

(ii) If h ∈ F+(X ) is such that

sup
x∈C

Ex

[
σC−1∑
k=0

h(Xk)

]
<∞, (7.4)

then

πh =

∫
C
π(dy)Ey

[
σC−1∑
k=0

h(Xk)

]
=

∫
C
π(dy)Ey

[
σC∑
k=1

h(Xk)

]
<∞.

1By “positive recurrent” we mean simply recurrent and positive.
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Proof. First, by Proposition 5.2, P is phi-irreducible. Moreover, by (7.2), σC is Px-a.s.
finite for all x ∈ C; in other words, C is Harris recurrent. Thus, by Theorem 6.8, C is
recurrent, and Theorem 6.1 hence implies that P is recurrent. By Theorem 6.13 there is
an invariant measure µ to which all other invariant measures are proportional and such
that 0 < µ(C) < ∞. (Indeed, recall that in the proof of Theorem 6.13, µ is constructed
from an invariant distribution µ̌ on the split space satisfying µ̌(α̌) = 1, the existence of
which is provided by Theorem 4.4. After that, the proof identifies µ such that µ∗ = µ̌.
Consequently, 1 = εµ(C).) Now, define

µC : X 3 A 7→
∫
C
µ(dy)Ey

[
σC∑
k=1

1A(Xk)

]
.

By the Harris recurrence of C,
∑σC

k=1 1C(Xk) = 1 Py-a.s. for all y ∈ C, which implies that
µC(C) = µ(C).

Exercise 7.5. Establish that µC = µ by showing that

1. the measure µC is P -invariant.

2. for all A ∈ X , µ(A) ≥ µC(A).

3. the previous implies that µC = µ.

By Exercise 7.5, µC is invariant. In addition, for all A ∈ X ,∫
C
µ(dy)Ey [1A(X0)] = µ(A ∩ C) = µC(A ∩ C) =

∫
C
µ(dy)Ey [1A(XσC )] .

Thus, since for all y ∈ C,

σC∑
k=1

1A(Xk) =

σC−1∑
k=0

1A(Xk)− 1A(X0) + 1A(XσC ), Py-a.s.,

it holds for all A ∈ X ,

µ(A) = µC(A) =

∫
C
µ(dy)Ey

[
σC∑
k=1

1A(Xk)

]
=

∫
C
µ(dy)Ey

[
σC−1∑
k=0

1A(Xk)

]
. (7.6)

Now,

µ(X) =

∫
C
µ(dy)Ey

[
σC−1∑
k=0

1X(Xk)

]
≤ µ(C) sup

y∈C
Ey [σC ] <∞,

implying that any invariant measure is finite. As a consequence, π = µ/µ(X) is the unique
invariant probability distribution. Indeed, let π′ be another invariant probability distribu-
tion; then there exists c ∈ R+ such that π′ = cµ, which implies that 1 = π′(X) = cµ(X),
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or, equivalently, c = 1/µ(X). Thus, π′ = π. In addition, by dividing (7.6) by µ(X), we
conclude that (7.3) holds true. This completes the proof of (i).

We turn to (ii). Under the condition (7.4), by monotone convergence (cf. Exercise 4.3),

πh =

∫
C
π(dy)Ey

[
σC−1∑
k=0

h(Xk)

]
≤ π(C) sup

y∈X
Ey

[
σC−1∑
k=0

h(Xk)

]
<∞,

showing (ii).

Even though this condition appears to be hard to check directly, it is indeed implied
by the following considerably more straightforward drift condition.

Theorem 7.7. Assume that there exist C ∈ X , V ∈ F(X ) and h ∈ F(X ) such that
1 ≤ h ≤ V , and a constant b ∈ R+ such that

PV ≤ V − h+ b1C . (7.8)

Then for all x ∈ X,

Ex

[
σC−1∑
k=0

h(Xk)

]
≤ V (x) + b1C(x). (7.9)

Thus, if C is an accessible small set and V is bounded on C, then the chain is positive
recurrent and πh <∞.

Proof. For all n ∈ N∗, set

Mn =

(
V (Xn) +

n−1∑
k=0

h(Xk)

)
1{σC≥n}.

We show that {Mn : n ∈ N∗} is a super-martingale. Indeed, pick arbitrarily x ∈ X and
write, using that {σC ≥ n+ 1} = {σC ≤ n}{ ∈ Fn, Px-a.s.,

Ex [Mn+1 | Fn] =

(
PV (Xn) +

n∑
k=0

h(Xk)

)
1{σC≥n+1}

≤

(
V (Xn)− h(Xn) + b1C(Xn) +

n∑
k=0

h(Xk)

)
1{σC≥n+1}

=

(
V (Xn) +

n−1∑
k=0

h(Xk)

)
1{σC≥n+1}

≤Mn,
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as 1C(Xn)1{σC≥n+1} = 0. For any n ∈ N∗, σC ∧ n is a bounded stopping time, and by
applying Doob’s optional stopping theorem we obtain, using again the drift condition (7.8),

Ex [MσC∧n] ≤ Ex [M1] = PV (x) + h(x) ≤ V (x) + b1C(x). (7.10)

This yields

Ex

[
σC∧n−1∑
k=0

h(Xk)

]
≤ V (x) + b1C(x)

which implies (7.9) by monotone convergence. If V is bounded on C, using the bound
(7.9) with h = 1 implies that supx∈C Ex[σC ] < ∞, which means that the condition (7.2)
is satisfied. Consequently, the chain is positive by Proposition 7.1. In addition, if V is
bounded on C, (7.9) implies (7.4) and finiteness of πh follows from Proposition 7.1.

The drift condition (7.8) is indeed weak and may be checked for a large set of models.

Exercise 7.11. The first-order auto regressive (AR(1)) process on R is defined iteratively
by

Xk+1 = φXk + σεk+1, k ∈ N,

where φ and σ are constants such that |φ|< 1 and σ > 0 and {εk : k ∈ N∗} is a sequence of
mutually independent variables with common density Γ with respect to Lebesgue measure
ν. For simplicity, assume that Γ(x) > 0 for all x ∈ R.

(a) Show that all compact sets are small for this model.

(b) Check that this chain satisfies the drift condition (7.8) for some suitable choices of V
and h.

Dynamical systems

We now direct focus towards limit theorems for positive recurrent chains. During the
coming lecture, our aim will be to establish, for any π-integrable function h ∈ F(X ), (a
significantly more general version of the) the law of large numbers

lim
n→∞

n−1
n−1∑
k=0

h(Xk) = πh, Px-a.s.

(where x ∈ X is arbitrary), as well as, given that h ∈ L2(π), the central limit theorem

√
n

(
1

n

n−1∑
k=0

h(Xk)− πh

)
Pπ

=⇒ σZ,
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where Z is standard normally distributed and σ2 > 0 is an asymptotic variance. The
derivation of the latter result will be driven by the so-called Poisson equation.

The approach that we take is based on the theory of dynamical systems, and in the
following we introduce some useful definitions and properties related to the same.

Definition 7.12 (dynamical system). Let (Ω,A,P) be a probability space.

• A measurable map T from (Ω,A) to (Ω,A) is a measure-preserving transformation if
for all A ∈ A, P(T−1(A)) = P ◦ T−1(A) = P(A). The probability P is then said to be
invariant under the transformation T and (Ω,A,P, T ) is called a dynamical system.

• The application T is said to be an invertible measure-preserving transformation if it
is measure-preserving, invertible, and its inverse T−1 is measurable.

Exercise 7.13. Show that

(a) if T is an invertible measure-preserving transformation, then T−1 is also measure-
preserving.

(b) if T is measure-preserving, then Tn is measure-preserving for all n ∈ N∗.

From previous lectures we recall the canonical space (XN,X�N), the coordinate process
{Xk : k ∈ N}, and the shift-operator θ : XN 3 (ω0, ω1, . . .) 7→ (ω1, ω2, . . .) ∈ XN.

Lemma 7.14. A probability measure P on (XN,X�N) is invariant for θ if and only if the
coordinate process is stationary under P.

Exercise 7.15. Prove Lemma 7.14.

Definition 7.16 (invariant variables and events). Let T : Ω→ Ω be measurable.

• An R̄-valued random variable Y on (Ω,A) is invariant for T if Y ◦ T = Y .

• A set A ∈ A is invariant for T if A = T−1(A) or, equivalently, if the indicator
function 1A is invariant for T .

Proposition 7.17. Let T : Ω→ Ω be measurable.

(i) The collection J of invariant sets for T is a sub-σ-field of A.

(ii) Let (E, E) be a measurable space such that singletons are measurable. Let Y : (Ω,A)→
(E, E) be a measurable mapping. Then, Y is invariant for T if and only if Y is J -
measurable.

Proof.
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Exercise 7.18. Establish the first claim (i).

We prove (ii). If Y is invariant for T , then for all B ∈ E ,

T−1(Y −1(B)) = (T ◦ Y )−1(B) = Y −1(B).

Thus, Y −1(B) ∈ J , which means that Y is J -measurable.
Conversely, assume that Y is J -measurable. Then for all B ∈ E ,

Y −1(B) = T−1(Y −1(B)) = (Y ◦ T )−1(B).

Now, since singletons are measurable, we may use the previous identity with B = {x} for
any x ∈ X. Thus, if Y (ω) = x, we may write

ω ∈ Y −1({x}) = (Y ◦ T )−1({x}),

which implies that Y ◦ T (ω) = x. Thus, Y = Y ◦ T , which shows that Y is invariant.

Remark 7.19. Consider again the coordinate process {Xk : k ∈ N} on (Ω,F) = (XN,X�N).
In this setting, the values of a random variable that is invariant for θ are preserved when
outcomes are shifted one or several steps. Thus, we may expect such variables, and hence
the invariant σ-field, to be related to asymptotics in some sense. Indeed, in this case,
J is contained in the tail σ-field, i.e. J ⊂ ∩∞k=0σ(X` : ` ≥ k). Moreover, for all
h ∈ F(B(R̄)), lim supn→∞ h(Xn), lim infn→∞ h(Xn), lim supn→∞ n

−1∑n−1
k=0 h(Xk), and

lim infn→∞ n
−1∑n−1

k=0 h(Xk) are all invariant.

Proof. For each k ∈ N, set Gk = σ(X` : ` ≥ k) and let Ek be the finite rectangles generating
Gk. If B ∈ Ek, then θ−1(B) ∈ Ek+1. Thus, θ : (Ω,Gk+1)→ (Ω,Gk) is measurable. Now, let
A ∈ F = G0 be invariant for θ. If also A ∈ Gk, then A = θ−1(A) ∈ Gk+1. Consequently, by
induction, A ∈ ∩∞k=0Gk, which was to be shown.

To prove the remaining statements, let ω ∈ Ω be fixed. In addition, let L ⊂ R̄ be the
set of points x ∈ R̄ for which there is a subsequence of {h(Xn) : n ∈ N} converging to
x. Then, lim supn→∞ h(Xn) = supL. On the other hand, the converging subsequences of
{h(Xn) ◦ θ : n ∈ N} are exactly those of {h(Xn) : n ∈ N} (just shifted one step). Thus,
lim supn→∞ h(Xn)◦θ = supL, which shows that lim supn→∞ h(Xn) is invariant. The same
argument applies to the rest of the quantities.


