April 20

Lecture 7: Uniqueness of π , Dynamical Systems

Lecturer: Jimmy Olsson

Goals of this lecture

- To find conditions guaranteeing that a Markov chain has a unique invariant probability measure.
- To start up a discussion on limit theorems for Markov chains by introducing some basic concepts related to dynamical systems.

Kac's formula and the existence of a unique π

As usual, let (X, \mathcal{X}) be some measurable space. Recall Definition 4.2 terming a phiirreducible chain *positive* if it admits an invariant probability measure.

Proposition 7.1 (Kac's formula). Let P be a transition kernel on $X \times X$ that admits an accessible small set $C \in X$ such that

$$\sup_{x \in C} \mathbb{E}_x \left[\sigma_C \right] < \infty. \tag{7.2}$$

Then the following holds true.

(i) The chain is positive recurrent¹, and the unique invariant probability measure π satisfies Kac's formula, *i.e.*, for all $A \in \mathcal{X}$,

$$\pi(A) = \int_C \pi(\mathrm{d}y) \mathbb{E}_y \left[\sum_{k=0}^{\sigma_C - 1} \mathbb{1}_A(X_k) \right] = \int_C \pi(\mathrm{d}y) \mathbb{E}_y \left[\sum_{k=1}^{\sigma_C} \mathbb{1}_A(X_k) \right].$$
(7.3)

(ii) If $h \in F_+(\mathcal{X})$ is such that

$$\sup_{x \in C} \mathbb{E}_x \left[\sum_{k=0}^{\sigma_C - 1} h(X_k) \right] < \infty, \tag{7.4}$$

then

$$\pi h = \int_C \pi(\mathrm{d}y) \mathbb{E}_y \left[\sum_{k=0}^{\sigma_C - 1} h(X_k) \right] = \int_C \pi(\mathrm{d}y) \mathbb{E}_y \left[\sum_{k=1}^{\sigma_C} h(X_k) \right] < \infty.$$

¹By "positive recurrent" we mean simply recurrent and positive.

Proof. First, by Proposition 5.2, P is phi-irreducible. Moreover, by (7.2), σ_C is \mathbb{P}_x -a.s. finite for all $x \in C$; in other words, C is Harris recurrent. Thus, by Theorem 6.8, C is recurrent, and Theorem 6.1 hence implies that P is recurrent. By Theorem 6.13 there is an invariant measure μ to which all other invariant measures are proportional and such that $0 < \mu(C) < \infty$. (Indeed, recall that in the proof of Theorem 6.13, μ is constructed from an invariant distribution $\check{\mu}$ on the split space satisfying $\check{\mu}(\check{\alpha}) = 1$, the existence of which is provided by Theorem 4.4. After that, the proof identifies μ such that $\mu^* = \check{\mu}$. Consequently, $1 = \varepsilon \mu(C)$.) Now, define

$$\mu_C: \mathcal{X} \ni A \mapsto \int_C \mu(\mathrm{d} y) \mathbb{E}_y \left[\sum_{k=1}^{\sigma_C} \mathbbm{1}_A(X_k) \right].$$

By the Harris recurrence of C, $\sum_{k=1}^{\sigma_C} \mathbb{1}_C(X_k) = 1 \mathbb{P}_y$ -a.s. for all $y \in C$, which implies that $\mu_C(C) = \mu(C)$.

Exercise 7.5. Establish that $\mu_C = \mu$ by showing that

- 1. the measure μ_C is *P*-invariant.
- 2. for all $A \in \mathcal{X}$, $\mu(A) \ge \mu_C(A)$.
- 3. the previous implies that $\mu_C = \mu$.

By Exercise 7.5, μ_C is invariant. In addition, for all $A \in \mathcal{X}$,

$$\int_C \mu(\mathrm{d}y) \mathbb{E}_y \left[\mathbbm{1}_A(X_0)\right] = \mu(A \cap C) = \mu_C(A \cap C) = \int_C \mu(\mathrm{d}y) \mathbb{E}_y \left[\mathbbm{1}_A(X_{\sigma_C})\right].$$

Thus, since for all $y \in C$,

$$\sum_{k=1}^{\sigma_C} \mathbb{1}_A(X_k) = \sum_{k=0}^{\sigma_C - 1} \mathbb{1}_A(X_k) - \mathbb{1}_A(X_0) + \mathbb{1}_A(X_{\sigma_C}), \quad \mathbb{P}_y\text{-a.s.}$$

it holds for all $A \in \mathcal{X}$,

$$\mu(A) = \mu_C(A) = \int_C \mu(\mathrm{d}y) \mathbb{E}_y \left[\sum_{k=1}^{\sigma_C} \mathbb{1}_A(X_k) \right] = \int_C \mu(\mathrm{d}y) \mathbb{E}_y \left[\sum_{k=0}^{\sigma_C - 1} \mathbb{1}_A(X_k) \right].$$
(7.6)

Now,

$$\mu(\mathsf{X}) = \int_{C} \mu(\mathrm{d}y) \, \mathbb{E}_{y} \left[\sum_{k=0}^{\sigma_{C}-1} \mathbb{1}_{\mathsf{X}}(X_{k}) \right] \leq \mu(C) \sup_{y \in C} \mathbb{E}_{y} \left[\sigma_{C} \right] < \infty,$$

implying that any invariant measure is finite. As a consequence, $\pi = \mu/\mu(X)$ is the unique invariant probability distribution. Indeed, let π' be another invariant probability distribution; then there exists $c \in \mathbb{R}_+$ such that $\pi' = c\mu$, which implies that $1 = \pi'(X) = c\mu(X)$,

7-3

or, equivalently, $c = 1/\mu(X)$. Thus, $\pi' = \pi$. In addition, by dividing (7.6) by $\mu(X)$, we conclude that (7.3) holds true. This completes the proof of (i).

We turn to (ii). Under the condition (7.4), by monotone convergence (cf. Exercise 4.3),

$$\pi h = \int_C \pi(\mathrm{d}y) \mathbb{E}_y \left[\sum_{k=0}^{\sigma_C - 1} h(X_k) \right] \le \pi(C) \sup_{y \in \mathsf{X}} \mathbb{E}_y \left[\sum_{k=0}^{\sigma_C - 1} h(X_k) \right] < \infty,$$

showing (ii).

Even though this condition appears to be hard to check directly, it is indeed implied by the following considerably more straightforward *drift condition*.

Theorem 7.7. Assume that there exist $C \in \mathcal{X}$, $V \in F(\mathcal{X})$ and $h \in F(\mathcal{X})$ such that $1 \leq h \leq V$, and a constant $b \in \mathbb{R}_+$ such that

$$PV \le V - h + b\mathbb{1}_C. \tag{7.8}$$

Then for all $x \in X$,

$$\mathbb{E}_x \left[\sum_{k=0}^{\sigma_C - 1} h(X_k) \right] \le V(x) + b \mathbb{1}_C(x).$$
(7.9)

Thus, if C is an accessible small set and V is bounded on C, then the chain is positive recurrent and $\pi h < \infty$.

Proof. For all $n \in \mathbb{N}^*$, set

$$M_n = \left(V(X_n) + \sum_{k=0}^{n-1} h(X_k) \right) \mathbb{1}_{\{\sigma_C \ge n\}}.$$

We show that $\{M_n : n \in \mathbb{N}^*\}$ is a super-martingale. Indeed, pick arbitrarily $x \in \mathsf{X}$ and write, using that $\{\sigma_C \ge n+1\} = \{\sigma_C \le n\}^{\complement} \in \mathcal{F}_n, \mathbb{P}_x$ -a.s.,

$$\mathbb{E}_{x} \left[M_{n+1} \mid \mathcal{F}_{n} \right] = \left(PV(X_{n}) + \sum_{k=0}^{n} h(X_{k}) \right) \mathbb{1}_{\{\sigma_{C} \ge n+1\}}$$

$$\leq \left(V(X_{n}) - h(X_{n}) + b \mathbb{1}_{C}(X_{n}) + \sum_{k=0}^{n} h(X_{k}) \right) \mathbb{1}_{\{\sigma_{C} \ge n+1\}}$$

$$= \left(V(X_{n}) + \sum_{k=0}^{n-1} h(X_{k}) \right) \mathbb{1}_{\{\sigma_{C} \ge n+1\}}$$

$$\leq M_{n},$$

as $\mathbb{1}_C(X_n)\mathbb{1}_{\{\sigma_C \ge n+1\}} = 0$. For any $n \in \mathbb{N}^*$, $\sigma_C \wedge n$ is a bounded stopping time, and by applying Doob's optional stopping theorem we obtain, using again the drift condition (7.8),

$$\mathbb{E}_x \left[M_{\sigma_C \wedge n} \right] \le \mathbb{E}_x \left[M_1 \right] = PV(x) + h(x) \le V(x) + b \mathbb{1}_C(x).$$
(7.10)

This yields

$$\mathbb{E}_x\left[\sum_{k=0}^{\sigma_C \wedge n-1} h(X_k)\right] \le V(x) + b\mathbb{1}_C(x)$$

which implies (7.9) by monotone convergence. If V is bounded on C, using the bound (7.9) with h = 1 implies that $\sup_{x \in C} \mathbb{E}_x[\sigma_C] < \infty$, which means that the condition (7.2) is satisfied. Consequently, the chain is positive by Proposition 7.1. In addition, if V is bounded on C, (7.9) implies (7.4) and finiteness of πh follows from Proposition 7.1.

The drift condition (7.8) is indeed weak and may be checked for a large set of models.

Exercise 7.11. The first-order auto regressive (AR(1)) process on \mathbb{R} is defined iteratively by

$$X_{k+1} = \phi X_k + \sigma \varepsilon_{k+1}, \quad k \in \mathbb{N}$$

where ϕ and σ are constants such that $|\phi| < 1$ and $\sigma > 0$ and $\{\varepsilon_k : k \in \mathbb{N}^*\}$ is a sequence of mutually independent variables with common density Γ with respect to Lebesgue measure ν . For simplicity, assume that $\Gamma(x) > 0$ for all $x \in \mathbb{R}$.

- (a) Show that all compact sets are small for this model.
- (b) Check that this chain satisfies the drift condition (7.8) for some suitable choices of V and h.

Dynamical systems

We now direct focus towards limit theorems for positive recurrent chains. During the coming lecture, our aim will be to establish, for any π -integrable function $h \in F(\mathcal{X})$, (a significantly more general version of the) the *law of large numbers*

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} h(X_k) = \pi h, \quad \mathbb{P}_x\text{-a.s.}$$

(where $x \in X$ is arbitrary), as well as, given that $h \in L^2(\pi)$, the central limit theorem

$$\sqrt{n}\left(\frac{1}{n}\sum_{k=0}^{n-1}h(X_k)-\pi h\right) \stackrel{\mathbb{P}_{\pi}}{\Longrightarrow} \sigma Z,$$

where Z is standard normally distributed and $\sigma^2 > 0$ is an asymptotic variance. The derivation of the latter result will be driven by the so-called *Poisson equation*.

The approach that we take is based on the theory of *dynamical systems*, and in the following we introduce some useful definitions and properties related to the same.

Definition 7.12 (dynamical system). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.

- A measurable map T from (Ω, \mathcal{A}) to (Ω, \mathcal{A}) is a measure-preserving transformation if for all $A \in \mathcal{A}$, $\mathbb{P}(T^{-1}(A)) = \mathbb{P} \circ T^{-1}(A) = \mathbb{P}(A)$. The probability \mathbb{P} is then said to be invariant under the transformation T and $(\Omega, \mathcal{A}, \mathbb{P}, T)$ is called a dynamical system.
- The application T is said to be an invertible measure-preserving transformation if it is measure-preserving, invertible, and its inverse T^{-1} is measurable.

Exercise 7.13. Show that

- (a) if T is an invertible measure-preserving transformation, then T^{-1} is also measurepreserving.
- (b) if T is measure-preserving, then T^n is measure-preserving for all $n \in \mathbb{N}^*$.

From previous lectures we recall the canonical space $(\mathsf{X}^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}})$, the coordinate process $\{X_k : k \in \mathbb{N}\}$, and the shift-operator $\theta : \mathsf{X}^{\mathbb{N}} \ni (\omega_0, \omega_1, \ldots) \mapsto (\omega_1, \omega_2, \ldots) \in \mathsf{X}^{\mathbb{N}}$.

Lemma 7.14. A probability measure \mathbb{P} on $(X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}})$ is invariant for θ if and only if the coordinate process is stationary under \mathbb{P} .

Exercise 7.15. Prove Lemma 7.14.

Definition 7.16 (invariant variables and events). Let $T : \Omega \to \Omega$ be measurable.

- An \mathbb{R} -valued random variable Y on (Ω, \mathcal{A}) is invariant for T if $Y \circ T = Y$.
- A set $A \in \mathcal{A}$ is invariant for T if $A = T^{-1}(A)$ or, equivalently, if the indicator function $\mathbb{1}_A$ is invariant for T.

Proposition 7.17. Let $T : \Omega \to \Omega$ be measurable.

- (i) The collection \mathcal{J} of invariant sets for T is a sub- σ -field of \mathcal{A} .
- (ii) Let $(\mathsf{E}, \mathcal{E})$ be a measurable space such that singletons are measurable. Let $Y : (\Omega, \mathcal{A}) \to (\mathsf{E}, \mathcal{E})$ be a measurable mapping. Then, Y is invariant for T if and only if Y is \mathcal{J} -measurable.

Proof.

Exercise 7.18. Establish the first claim (i).

We prove (ii). If Y is invariant for T, then for all $B \in \mathcal{E}$,

$$T^{-1}(Y^{-1}(B)) = (T \circ Y)^{-1}(B) = Y^{-1}(B).$$

Thus, $Y^{-1}(B) \in \mathcal{J}$, which means that Y is \mathcal{J} -measurable.

Conversely, assume that Y is \mathcal{J} -measurable. Then for all $B \in \mathcal{E}$,

$$Y^{-1}(B) = T^{-1}(Y^{-1}(B)) = (Y \circ T)^{-1}(B).$$

Now, since singletons are measurable, we may use the previous identity with $B = \{x\}$ for any $x \in X$. Thus, if $Y(\omega) = x$, we may write

$$\omega \in Y^{-1}(\{x\}) = (Y \circ T)^{-1}(\{x\}),$$

which implies that $Y \circ T(\omega) = x$. Thus, $Y = Y \circ T$, which shows that Y is invariant. \Box

Remark 7.19. Consider again the coordinate process $\{X_k : k \in \mathbb{N}\}$ on $(\Omega, \mathcal{F}) = (X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}})$. In this setting, the values of a random variable that is invariant for θ are preserved when outcomes are shifted one or several steps. Thus, we may expect such variables, and hence the invariant σ -field, to be related to asymptotics in some sense. Indeed, in this case, \mathcal{J} is contained in the tail σ -field, i.e. $\mathcal{J} \subset \bigcap_{k=0}^{\infty} \sigma(X_{\ell} : \ell \geq k)$. Moreover, for all $h \in \mathsf{F}(\mathcal{B}(\mathbb{R}))$, $\limsup_{n \to \infty} h(X_n)$, $\liminf_{n \to \infty} h(X_n)$, $\limsup_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} h(X_k)$, and $\liminf_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} h(X_k)$ are all invariant.

Proof. For each $k \in \mathbb{N}$, set $\mathcal{G}_k = \sigma(X_\ell : \ell \ge k)$ and let \mathcal{E}_k be the finite rectangles generating \mathcal{G}_k . If $B \in \mathcal{E}_k$, then $\theta^{-1}(B) \in \mathcal{E}_{k+1}$. Thus, $\theta : (\Omega, \mathcal{G}_{k+1}) \to (\Omega, \mathcal{G}_k)$ is measurable. Now, let $A \in \mathcal{F} = \mathcal{G}_0$ be invariant for θ . If also $A \in \mathcal{G}_k$, then $A = \theta^{-1}(A) \in \mathcal{G}_{k+1}$. Consequently, by induction, $A \in \bigcap_{k=0}^{\infty} \mathcal{G}_k$, which was to be shown.

To prove the remaining statements, let $\omega \in \Omega$ be fixed. In addition, let $L \subset \mathbb{R}$ be the set of points $x \in \mathbb{R}$ for which there is a subsequence of $\{h(X_n) : n \in \mathbb{N}\}$ converging to x. Then, $\limsup_{n\to\infty} h(X_n) = \sup L$. On the other hand, the converging subsequences of $\{h(X_n) \circ \theta : n \in \mathbb{N}\}$ are exactly those of $\{h(X_n) : n \in \mathbb{N}\}$ (just shifted one step). Thus, $\limsup_{n\to\infty} h(X_n) \circ \theta = \sup L$, which shows that $\limsup_{n\to\infty} h(X_n)$ is invariant. The same argument applies to the rest of the quantities.