
SF3953: Markov Chains and Processes Spring 2017

Lecture 8: Limit theorems for Markov chains

Lecturer: Jimmy Olsson April 21

Goals of this lecture

• To establish a Birkhoff theorem for positive recurrent Markov chains.

• To establish a central limit theorem for such chains under the assumption that the
Poisson equation has a solution.

Ergodic dynamical systems

We will make use of the following result, which is fundamental in ergodic theory.

Theorem 8.1 (Birkhoff’s ergodic theorem). Let (Ω,A,P, T ) be a dynamical system and
Y a random variable such that E[|Y |] <∞. Then, P-a.s.,

lim
n→∞

n−1
n−1∑
k=0

Y ◦ T k = E[Y | J ]. (8.2)

Moreover, the convergence holds in L1(Ω,A,P).

Definition 8.3. A dynamical system (Ω,A,P, T ) is ergodic if the invariant σ-field J is
trivial for P, i.e. for all A ∈ J , P(A) ∈ {0, 1}.

Exercise 8.4. Let (Ω,A,P, T ) be an ergodic dynamical system and Y a random variable
for which E[Y ] is well-defined. Then, show that the limit in (8.2) is equal to E[Y ].

Ergodic Markov chains

We now cast the problem of deriving a Birkhoff theorem for Markov chains into the frame-
work of ergodic dynamical systems. Thus, in following we consider a Markov kernel P on
some measurable space (X,X ) and the coordinate process {Xk : k ∈ N} on the canonical
space (Ω,F) = (XN,X�N), endowed with the family {Pµ : µ ∈ M1(X )} of probability
measures under which the coordinate process is a Markov chain with kernel P and initial
distribution µ.
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Definition 8.5. A probability measure π ∈ M1(X ) is P -ergodic if it is invariant with
respect to P and if the dynamical system (Ω,F ,Pπ, θ) is ergodic.

Theorem 8.6 (a Birkhoff theorem for Markov chains). Let P be a Markov kernel on X×X
and let π be a P -ergodic probability measure. Let Y ∈ L1(Ω,F ,Pπ). Then for π-almost all
x ∈ X,

lim
n→∞

n−1
n−1∑
k=0

Y ◦ θk = Eπ[Y ], Px-a.s.

Proof. Since π is P -ergodic, the invariant σ-field J is trivial. Thus, by Theorem 8.1 and
Exercise 8.4,

lim
n→∞

n−1
n−1∑
k=0

Y ◦ θk = Eπ[Y ], Pπ-a.s. (8.7)

Let A ∈ F be the set of ω ∈ Ω for which the convergence (8.7) holds. Then Pπ(A) =∫
Px(A)π(dx) = 1, which implies, since Px(A) ≤ 1, that Px(A) = 1 for π-almost all x ∈ X.

This completes the proof.

We now seek conditions guaranteeing P -ergodicity, and it turns out that uniqueness of
π is such a condition.

The following proposition shows that if a Markov kernel P has an invariant distribution
and if the invariant σ-field is not trivial for Pπ, then one may construct two mutually
singular invariant distributions.

Proposition 8.8. Let π be a P -invariant probability measure. Assume that there exists
A ∈ J such that α = Pπ(A) /∈ {0, 1}. Then, there exists B ∈ X such that π(B) = α and
the probability measures

πB(·) = α−1π(B ∩ ·) and πB{(·) = (1− α)−1π(B{ ∩ ·)

are invariant for P and

PπB
(
Xk ∈ B for all k ∈ N

)
= Pπ

B{

(
Xk ∈ B{ for all k ∈ N

)
= 1.

This proposition has an important consequence: if a Markov kernel P has a unique in-
variant distribution π, then the invariant σ-field is necessarily trivial for Pπ. The dynamical
system (Ω,F ,Pπ, θ) is hence ergodic.

Corollary 8.9. If the Markov kernel P admits a unique invariant probability π, then π is
P -ergodic.

We preface the proof of Proposition 8.8 by the following interesting lemma.
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Lemma 8.10. Let π ∈ M1(X ) be invariant with respect to P and Y ∈ L1(Ω,F ,Pπ) be
invariant for θ. Then Ex[|Y |] <∞ π-a.s., the function X 3 x 7→ Ex[Y ] is π-integrable, and
Y = EX0 [Y ], Pπ-a.s.

Proof. Since Y ∈ L1(Ω,F ,Pπ), Eπ[|Y |] =
∫
Ex[|Y |]π(dx) <∞, which implies that Ex[|Y |] <

∞ π-a.s. and that the function X 3 x 7→ Ex[Y ] is π-integrable. Finally, by the Markov
property and the invariance of Y , Pπ-a.s.,

EXk [Y ] = Eπ [Y ◦ θk | Fk] = Eπ [Y | Fk] .

Thus, by Theorem 8.18,
lim
k→∞

EXk [Y ] = Eπ [Y | F ] = Y, (8.11)

Pπ-a.s. and in L1(Ω,F ,Pπ). Since for all random variables Z on (Ω,F), Eπ[Z ◦θk] = Eπ[Z]
(can you prove it?),

Eπ [|Y − EX0 [Y ]|] = Eπ [|Y − EX0 [Y ]| ◦ θk] = Eπ [|Y ◦ θk − EXk [Y ]|]
= Eπ [|Y − EXk [Y ]|] .

Now, letting k tend to infinity and applying (8.11) yields

Eπ [|Y − EX0 [Y ]|] = lim
k→∞

Eπ [|Y − EXk [Y ]|] = 0,

which shows that Y = EX0 [Y ], Pπ-a.s.

Proof of Proposition 8.8. Since A ∈ J , the random variable 1A is invariant. Thus, by
Lemma 8.10, Pπ-a.s.,

1A = EX0 [1A] = PX0(A). (8.12)

Let B = {x ∈ X : Px(A) = 1}; then, the following identities hold Pπ-a.s. If 1B(X0) = 1,
then, by (8.12), 1A = 1; thus, 1B(X0) ≤ 1A. On the contrary, if 1A = 1, then, again
by (8.12), PX0(A) = 1, which implies that 1B(X0) = 1. Consequently, 1A ≤ 1B(X0),
implying that 1A = 1B(X0), Pπ-a.s. As 1A is invariant, this implies that

1A = 1B(X0) = 1B(X1) = 1B(X2) = . . . = 1B(Xk) = . . . =

∞∏
k=0

1B(Xk), Pπ-a.s.

These equalities have the following implications. First, for all D ∈ X ,

πBP (D) = PπB (X1 ∈ D) = α−1Pπ(X0 ∈ B,X1 ∈ D) = α−1Pπ(X1 ∈ B,X1 ∈ D)

= α−1Pπ(X0 ∈ B,X0 ∈ D) = πB(D),
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which shows that πB is invariant with respect to P . Second,

1 = PπB (X0 ∈ B) = α−1Pπ(X0 ∈ B) = α−1Pπ(Xk ∈ B for all k ∈ N)

= PπB (Xk ∈ B for all k ∈ N).

Exactly the same arguments apply to πB{ , and the proof is complete.

A central limit theorem for additive state functionals

As before, let {Xk : k ∈ N} be the canonical Markov chain with Markov kernel P on X×X
and let π ∈ M1(X ) be invariant with respect to P . The goal of the following section is to
derive a central limit theorem (CLT) for Markov chain path averages of increasing length.
The main tool will be the following.

Definition 8.13 (Poisson equation). Assume that P admits a unique invariant distribution
π. For h ∈ L1(π), the equation

ĥ− Pĥ = h− πh (8.14)

is called the Poisson equation associated to the function h. Any ĥ ∈ F(X ) satisfying
P |ĥ|(x) < ∞ for all x ∈ X and such that (8.14) holds true is called a solution of the
Poisson equation associated to h.

Theorem 8.15. Let P be a Markov kernel that admits a unique invariant probability
measure π. Let h ∈ L2(π) and assume that there exists a solution ĥ ∈ L2(π) of the Poisson
equation associated to h. Then

√
n

(
1

n

n−1∑
k=0

h(Xk)− πh

)
Pπ

=⇒ σπ(ĥ)Z,

where Z is standard normally distributed and

σ2π(ĥ) = Eπ
[
{ĥ(X1)− Pĥ(X0)}2

]
. (8.16)

We preface the proof of Theorem 8.15 by the following lemma, which is a straightforward
consequence of the CLT for stationary martingale difference sequences; see Theorem 8.19.
For the invariant distribution π in the statement of the theorem, denote π̄ = π � P .

Lemma 8.17. Let G ∈ L2(π̄) and assume that
∫
G(x, y)P (x,dy) = 0, for all x ∈ X. Then

n−1/2
n−1∑
k=0

G(Xk, Xk+1)
Pπ

=⇒ π̄(G2)Z,

where Z is standard normally distributed.
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Proof. By the Markov property and by assumption, for all k ∈ N, Pπ-a.s.,

Eπ[G(Xk, Xk+1) | Fk] = EXk [G(X0, X1)] = 0,

which means, as G ∈ L2(π̄) by assumption, that {G(Xk, Xk+1) : k ∈ N} is a square
integrable martingale difference sequence under Pπ. Thus, Theorem 8.19 applies if the
conditions (8.20) and (8.21) hold true. On the other hand, by the Markov property and
Theorem 8.6, Pπ-a.s.,

lim
n→∞

1

n

n−1∑
k=0

Eπ
[
G2(Xk, Xk+1) | Fk

]
= lim

n→∞

1

n

n−1∑
k=0

EXk
[
G2(X0, X1)

]
=

∫
Ex
[
G2(X0, X1)

]
π(dx) = π̄(G2),

where the convergence holds Pπ-a.s. and hence in Pπ-probability. This shows (8.20). In
addition, pick δ > 0; then for all ε > 0, by Markov’s inequality and stationarity,

Pπ

(
1

n

n−1∑
k=0

Eπ
[
G2(Xk, Xk+1)1{G2(Xk,Xk+1)≥δ

√
n} | Fk

]
≥ ε

)

≤ 1

nε

n−1∑
k=0

Eπ
[
EXk

[
G2(X0, X1)1{G2(X0,X1)≥δ

√
n}

]]
≤ 1

ε
Eπ
[
G2(X0, X1)1{G2(X0,X1)≥δ

√
n}

]
,

where the right hand side tends to zero as n tends to infinity by monotone convergence
and the fact that G ∈ L2(π̄) by assumption. This shows (8.21) and hence completes the
proof.

Proof of Theorem 8.15. Without loss of generality, assume that πh = 0. Then, by the
Poisson equation, we have the decomposition

n−1∑
k=0

h(Xk) = Mn + ĥ(X0)− ĥ(Xn),

where

Mn =
n−1∑
k=0

(
ĥ(Xk+1)− Pĥ(Xk)

)
and G(x, y) = ĥ(y)− Pĥ(x), (x, y) ∈ X2, satisfies the assumptions of Lemma 8.17; indeed,
in that case, for all x ∈ X,

Ex [G(X0, X1)] = Ex
[
ĥ(X1)

]
− Pĥ(x) = 0.



Lecture 8: Limit theorems for Markov chains 8-6

As a consequence, by Lemma 8.17,

n−1/2Mn
Pπ

=⇒ σπ(h̄)Z,

where σπ(ĥ) is given by (8.16). Moreover, since by stationarity,

Eπ
[
|ĥ(X0)− ĥ(Xn)|

]
≤ 2π(|ĥ|),

implying that

n−1/2
(
ĥ(X0)− ĥ(Xn)

) Pπ
=⇒ 0,

the result follows.

A Martingales

Let (Ω,F ,P) be a probability space.

Theorem 8.18. Let X ∈ L1(Ω,F ,P) and {Fk : k ∈ N} be a filtration of F . Then the
sequence {E[X | Fk] : k ∈ N} converges P-a.s. and in L1(Ω,F ,P) to E[X | F∞], where
F∞ = σ(∪∞k=0Fk).

Theorem 8.19. Let {(Zk,Fk) : k ∈ N} be square integrable martingale difference sequence.
Assume that there exists σ > 0 such that as n tends to infinity,

n−1
n−1∑
k=0

E
[
Z2
k+1 | Fk

] P−→ σ2, (8.20)

n−1
n−1∑
k=0

E
[
Z2
k+11{|Zk+1|>δ

√
n} | Fk

]
P−→ 0, (8.21)

for all δ > 0. Then

n−1/2
n−1∑
k=0

Zk
P

=⇒ σV,

as n tends to infinity, where V is standard normally distributed.
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