April 21

Lecture 8: Limit theorems for Markov chains

Lecturer: Jimmy Olsson

Goals of this lecture

- To establish a Birkhoff theorem for positive recurrent Markov chains.
- To establish a central limit theorem for such chains under the assumption that the Poisson equation has a solution.

Ergodic dynamical systems

We will make use of the following result, which is fundamental in ergodic theory.

Theorem 8.1 (Birkhoff's ergodic theorem). Let $(\Omega, \mathcal{A}, \mathbb{P}, T)$ be a dynamical system and Y a random variable such that $\mathbb{E}[|Y|] < \infty$. Then, \mathbb{P} -a.s.,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} Y \circ T^k = \mathbb{E}[Y \mid \mathcal{J}].$$
(8.2)

Moreover, the convergence holds in $L^1(\Omega, \mathcal{A}, \mathbb{P})$.

Definition 8.3. A dynamical system $(\Omega, \mathcal{A}, \mathbb{P}, T)$ is ergodic if the invariant σ -field \mathcal{J} is trivial for \mathbb{P} , i.e. for all $A \in \mathcal{J}$, $\mathbb{P}(A) \in \{0, 1\}$.

Exercise 8.4. Let $(\Omega, \mathcal{A}, \mathbb{P}, T)$ be an ergodic dynamical system and Y a random variable for which $\mathbb{E}[Y]$ is well-defined. Then, show that the limit in (8.2) is equal to $\mathbb{E}[Y]$.

Ergodic Markov chains

We now cast the problem of deriving a *Birkhoff theorem for Markov chains* into the framework of ergodic dynamical systems. Thus, in following we consider a Markov kernel P on some measurable space (X, \mathcal{X}) and the coordinate process $\{X_k : k \in \mathbb{N}\}$ on the canonical space $(\Omega, \mathcal{F}) = (X^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}})$, endowed with the family $\{\mathbb{P}_{\mu} : \mu \in M_1(\mathcal{X})\}$ of probability measures under which the coordinate process is a Markov chain with kernel P and initial distribution μ . Lecture 8: Limit theorems for Markov chains

Definition 8.5. A probability measure $\pi \in M_1(\mathcal{X})$ is P-ergodic if it is invariant with respect to P and if the dynamical system $(\Omega, \mathcal{F}, \mathbb{P}_{\pi}, \theta)$ is ergodic.

Theorem 8.6 (a Birkhoff theorem for Markov chains). Let P be a Markov kernel on $X \times X$ and let π be a P-ergodic probability measure. Let $Y \in L^1(\Omega, \mathcal{F}, \mathbb{P}_{\pi})$. Then for π -almost all $x \in X$,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} Y \circ \theta^k = \mathbb{E}_{\pi}[Y], \quad \mathbb{P}_x\text{-}a.s.$$

Proof. Since π is *P*-ergodic, the invariant σ -field \mathcal{J} is trivial. Thus, by Theorem 8.1 and Exercise 8.4,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} Y \circ \theta^k = \mathbb{E}_{\pi}[Y], \quad \mathbb{P}_{\pi}\text{-a.s.}$$
(8.7)

Let $A \in \mathcal{F}$ be the set of $\omega \in \Omega$ for which the convergence (8.7) holds. Then $\mathbb{P}_{\pi}(A) = \int \mathbb{P}_x(A) \pi(\mathrm{d}x) = 1$, which implies, since $\mathbb{P}_x(A) \leq 1$, that $\mathbb{P}_x(A) = 1$ for π -almost all $x \in X$. This completes the proof.

We now seek conditions guaranteeing *P*-ergodicity, and it turns out that uniqueness of π is such a condition.

The following proposition shows that if a Markov kernel P has an invariant distribution and if the invariant σ -field is not trivial for \mathbb{P}_{π} , then one may construct two mutually singular invariant distributions.

Proposition 8.8. Let π be a *P*-invariant probability measure. Assume that there exists $A \in \mathcal{J}$ such that $\alpha = \mathbb{P}_{\pi}(A) \notin \{0,1\}$. Then, there exists $B \in \mathcal{X}$ such that $\pi(B) = \alpha$ and the probability measures

$$\pi_B(\cdot) = \alpha^{-1} \pi(B \cap \cdot) \quad and \quad \pi_B \mathfrak{c}(\cdot) = (1 - \alpha)^{-1} \pi(B^{\mathfrak{l}} \cap \cdot)$$

are invariant for P and

$$\mathbb{P}_{\pi_B}\left(X_k \in B \text{ for all } k \in \mathbb{N}\right) = \mathbb{P}_{\pi_B^{\complement}}\left(X_k \in B^{\complement} \text{ for all } k \in \mathbb{N}\right) = 1.$$

This proposition has an important consequence: if a Markov kernel P has a unique invariant distribution π , then the invariant σ -field is necessarily trivial for \mathbb{P}_{π} . The dynamical system $(\Omega, \mathcal{F}, \mathbb{P}_{\pi}, \theta)$ is hence ergodic.

Corollary 8.9. If the Markov kernel P admits a unique invariant probability π , then π is *P*-ergodic.

We preface the proof of Proposition 8.8 by the following interesting lemma.

Lemma 8.10. Let $\pi \in M_1(\mathcal{X})$ be invariant with respect to P and $Y \in L^1(\Omega, \mathcal{F}, \mathbb{P}_{\pi})$ be invariant for θ . Then $\mathbb{E}_x[|Y|] < \infty \pi$ -a.s., the function $X \ni x \mapsto \mathbb{E}_x[Y]$ is π -integrable, and $Y = \mathbb{E}_{X_0}[Y], \mathbb{P}_{\pi}$ -a.s.

Proof. Since $Y \in L^1(\Omega, \mathcal{F}, \mathbb{P}_{\pi})$, $\mathbb{E}_{\pi}[|Y|] = \int \mathbb{E}_x[|Y|] \pi(\mathrm{d}x) < \infty$, which implies that $\mathbb{E}_x[|Y|] < \infty$ π -a.s. and that the function $X \ni x \mapsto \mathbb{E}_x[Y]$ is π -integrable. Finally, by the Markov property and the invariance of Y, \mathbb{P}_{π} -a.s.,

$$\mathbb{E}_{X_{k}}[Y] = \mathbb{E}_{\pi}[Y \circ \theta_{k} \mid \mathcal{F}_{k}] = \mathbb{E}_{\pi}[Y \mid \mathcal{F}_{k}].$$

Thus, by Theorem 8.18,

$$\lim_{k \to \infty} \mathbb{E}_{X_k} \left[Y \right] = \mathbb{E}_{\pi} \left[Y \mid \mathcal{F} \right] = Y, \tag{8.11}$$

 \mathbb{P}_{π} -a.s. and in $L^1(\Omega, \mathcal{F}, \mathbb{P}_{\pi})$. Since for all random variables Z on (Ω, \mathcal{F}) , $\mathbb{E}_{\pi}[Z \circ \theta_k] = \mathbb{E}_{\pi}[Z]$ (can you prove it?),

$$\mathbb{E}_{\pi}\left[|Y - \mathbb{E}_{X_{0}}[Y]|\right] = \mathbb{E}_{\pi}\left[|Y - \mathbb{E}_{X_{0}}[Y]| \circ \theta_{k}\right] = \mathbb{E}_{\pi}\left[|Y \circ \theta_{k} - \mathbb{E}_{X_{k}}[Y]|\right] = \mathbb{E}_{\pi}\left[|Y - \mathbb{E}_{X_{k}}[Y]|\right].$$

Now, letting k tend to infinity and applying (8.11) yields

$$\mathbb{E}_{\pi}\left[\left|Y - \mathbb{E}_{X_0}\left[Y\right]\right|\right] = \lim_{k \to \infty} \mathbb{E}_{\pi}\left[\left|Y - \mathbb{E}_{X_k}\left[Y\right]\right|\right] = 0,$$

which shows that $Y = \mathbb{E}_{X_0}[Y]$, \mathbb{P}_{π} -a.s.

Proof of Proposition 8.8. Since $A \in \mathcal{J}$, the random variable $\mathbb{1}_A$ is invariant. Thus, by Lemma 8.10, \mathbb{P}_{π} -a.s.,

$$\mathbb{1}_{A} = \mathbb{E}_{X_{0}}[\mathbb{1}_{A}] = \mathbb{P}_{X_{0}}(A).$$
(8.12)

Let $B = \{x \in X : \mathbb{P}_x(A) = 1\}$; then, the following identities hold \mathbb{P}_{π} -a.s. If $\mathbb{1}_B(X_0) = 1$, then, by (8.12), $\mathbb{1}_A = 1$; thus, $\mathbb{1}_B(X_0) \leq \mathbb{1}_A$. On the contrary, if $\mathbb{1}_A = 1$, then, again by (8.12), $\mathbb{P}_{X_0}(A) = 1$, which implies that $\mathbb{1}_B(X_0) = 1$. Consequently, $\mathbb{1}_A \leq \mathbb{1}_B(X_0)$, implying that $\mathbb{1}_A = \mathbb{1}_B(X_0)$, \mathbb{P}_{π} -a.s. As $\mathbb{1}_A$ is invariant, this implies that

$$\mathbb{1}_A = \mathbb{1}_B(X_0) = \mathbb{1}_B(X_1) = \mathbb{1}_B(X_2) = \dots = \mathbb{1}_B(X_k) = \dots = \prod_{k=0}^{\infty} \mathbb{1}_B(X_k), \quad \mathbb{P}_{\pi}\text{-a.s.}$$

These equalities have the following implications. First, for all $D \in \mathcal{X}$,

$$\pi_B P(D) = \mathbb{P}_{\pi_B}(X_1 \in D) = \alpha^{-1} \mathbb{P}_{\pi}(X_0 \in B, X_1 \in D) = \alpha^{-1} \mathbb{P}_{\pi}(X_1 \in B, X_1 \in D)$$
$$= \alpha^{-1} \mathbb{P}_{\pi}(X_0 \in B, X_0 \in D) = \pi_B(D),$$

which shows that π_B is invariant with respect to P. Second,

$$1 = \mathbb{P}_{\pi_B}(X_0 \in B) = \alpha^{-1} \mathbb{P}_{\pi}(X_0 \in B) = \alpha^{-1} \mathbb{P}_{\pi}(X_k \in B \text{ for all } k \in \mathbb{N})$$
$$= \mathbb{P}_{\pi_B}(X_k \in B \text{ for all } k \in \mathbb{N}).$$

Exactly the same arguments apply to $\pi_{B^{\complement}}$, and the proof is complete.

A central limit theorem for additive state functionals

As before, let $\{X_k : k \in \mathbb{N}\}$ be the canonical Markov chain with Markov kernel P on $X \times \mathcal{X}$ and let $\pi \in M_1(\mathcal{X})$ be invariant with respect to P. The goal of the following section is to derive a *central limit theorem* (CLT) for Markov chain path averages of increasing length. The main tool will be the following.

Definition 8.13 (Poisson equation). Assume that P admits a unique invariant distribution π . For $h \in L^1(\pi)$, the equation

$$\hat{h} - P\hat{h} = h - \pi h \tag{8.14}$$

is called the Poisson equation associated to the function h. Any $\hat{h} \in F(\mathcal{X})$ satisfying $P|\hat{h}|(x) < \infty$ for all $x \in X$ and such that (8.14) holds true is called a solution of the Poisson equation associated to h.

Theorem 8.15. Let P be a Markov kernel that admits a unique invariant probability measure π . Let $h \in L^2(\pi)$ and assume that there exists a solution $\hat{h} \in L^2(\pi)$ of the Poisson equation associated to h. Then

$$\sqrt{n}\left(\frac{1}{n}\sum_{k=0}^{n-1}h(X_k)-\pi h\right) \stackrel{\mathbb{P}_{\pi}}{\Longrightarrow} \sigma_{\pi}(\hat{h})Z,$$

where Z is standard normally distributed and

$$\sigma_{\pi}^{2}(\hat{h}) = \mathbb{E}_{\pi} \left[\{ \hat{h}(X_{1}) - P\hat{h}(X_{0}) \}^{2} \right].$$
(8.16)

We preface the proof of Theorem 8.15 by the following lemma, which is a straightforward consequence of the CLT for stationary martingale difference sequences; see Theorem 8.19. For the invariant distribution π in the statement of the theorem, denote $\bar{\pi} = \pi \otimes P$.

Lemma 8.17. Let $G \in L^2(\bar{\pi})$ and assume that $\int G(x,y) P(x,dy) = 0$, for all $x \in X$. Then

$$n^{-1/2} \sum_{k=0}^{n-1} G(X_k, X_{k+1}) \xrightarrow{\mathbb{P}_{\pi}} \bar{\pi}(G^2) Z,$$

where Z is standard normally distributed.

Proof. By the Markov property and by assumption, for all $k \in \mathbb{N}$, \mathbb{P}_{π} -a.s.,

$$\mathbb{E}_{\pi}[G(X_k, X_{k+1}) \mid \mathcal{F}_k] = \mathbb{E}_{X_k}[G(X_0, X_1)] = 0,$$

which means, as $G \in L^2(\bar{\pi})$ by assumption, that $\{G(X_k, X_{k+1}) : k \in \mathbb{N}\}$ is a square integrable martingale difference sequence under \mathbb{P}_{π} . Thus, Theorem 8.19 applies if the conditions (8.20) and (8.21) hold true. On the other hand, by the Markov property and Theorem 8.6, \mathbb{P}_{π} -a.s.,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{E}_{\pi} \left[G^2(X_k, X_{k+1}) \mid \mathcal{F}_k \right] = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{E}_{X_k} \left[G^2(X_0, X_1) \right] \\ = \int \mathbb{E}_x \left[G^2(X_0, X_1) \right] \pi(\mathrm{d}x) = \bar{\pi}(G^2),$$

where the convergence holds \mathbb{P}_{π} -a.s. and hence in \mathbb{P}_{π} -probability. This shows (8.20). In addition, pick $\delta > 0$; then for all $\varepsilon > 0$, by Markov's inequality and stationarity,

$$\mathbb{P}_{\pi}\left(\frac{1}{n}\sum_{k=0}^{n-1}\mathbb{E}_{\pi}\left[G^{2}(X_{k},X_{k+1})\mathbb{1}_{\{G^{2}(X_{k},X_{k+1})\geq\delta\sqrt{n}\}}\mid\mathcal{F}_{k}\right]\geq\varepsilon\right)$$
$$\leq\frac{1}{n\varepsilon}\sum_{k=0}^{n-1}\mathbb{E}_{\pi}\left[\mathbb{E}_{X_{k}}\left[G^{2}(X_{0},X_{1})\mathbb{1}_{\{G^{2}(X_{0},X_{1})\geq\delta\sqrt{n}\}}\right]\right]$$
$$\leq\frac{1}{\varepsilon}\mathbb{E}_{\pi}\left[G^{2}(X_{0},X_{1})\mathbb{1}_{\{G^{2}(X_{0},X_{1})\geq\delta\sqrt{n}\}}\right],$$

where the right hand side tends to zero as n tends to infinity by monotone convergence and the fact that $G \in L^2(\bar{\pi})$ by assumption. This shows (8.21) and hence completes the proof.

Proof of Theorem 8.15. Without loss of generality, assume that $\pi h = 0$. Then, by the Poisson equation, we have the decomposition

$$\sum_{k=0}^{n-1} h(X_k) = M_n + \hat{h}(X_0) - \hat{h}(X_n),$$

where

$$M_n = \sum_{k=0}^{n-1} \left(\hat{h}(X_{k+1}) - P\hat{h}(X_k) \right)$$

and $G(x, y) = \hat{h}(y) - P\hat{h}(x)$, $(x, y) \in X^2$, satisfies the assumptions of Lemma 8.17; indeed, in that case, for all $x \in X$,

$$\mathbb{E}_x \left[G(X_0, X_1) \right] = \mathbb{E}_x \left[\hat{h}(X_1) \right] - P \hat{h}(x) = 0.$$

As a consequence, by Lemma 8.17,

$$n^{-1/2}M_n \stackrel{\mathbb{P}_{\pi}}{\Longrightarrow} \sigma_{\pi}(\bar{h})Z,$$

where $\sigma_{\pi}(\hat{h})$ is given by (8.16). Moreover, since by stationarity,

$$\mathbb{E}_{\pi}\left[\left|\hat{h}(X_0) - \hat{h}(X_n)\right|\right] \le 2\pi(|\hat{h}|),$$

implying that

$$n^{-1/2}\left(\hat{h}(X_0) - \hat{h}(X_n)\right) \stackrel{\mathbb{P}_{\pi}}{\Longrightarrow} 0.$$

the result follows.

A Martingales

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Theorem 8.18. Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\{\mathcal{F}_k : k \in \mathbb{N}\}$ be a filtration of \mathcal{F} . Then the sequence $\{\mathbb{E}[X \mid \mathcal{F}_k] : k \in \mathbb{N}\}$ converges \mathbb{P} -a.s. and in $L^1(\Omega, \mathcal{F}, \mathbb{P})$ to $\mathbb{E}[X \mid \mathcal{F}_{\infty}]$, where $\mathcal{F}_{\infty} = \sigma(\bigcup_{k=0}^{\infty} \mathcal{F}_k)$.

Theorem 8.19. Let $\{(Z_k, \mathcal{F}_k) : k \in \mathbb{N}\}$ be square integrable martingale difference sequence. Assume that there exists $\sigma > 0$ such that as n tends to infinity,

$$n^{-1} \sum_{k=0}^{n-1} \mathbb{E} \left[Z_{k+1}^2 \mid \mathcal{F}_k \right] \xrightarrow{\mathbb{P}} \sigma^2, \tag{8.20}$$

$$n^{-1} \sum_{k=0}^{n-1} \mathbb{E}\left[Z_{k+1}^2 \mathbb{1}_{\{|Z_{k+1}| > \delta\sqrt{n}\}} \mid \mathcal{F}_k \right] \xrightarrow{\mathbb{P}} 0,$$
(8.21)

for all $\delta > 0$. Then

$$n^{-1/2} \sum_{k=0}^{n-1} Z_k \stackrel{\mathbb{P}}{\Longrightarrow} \sigma V,$$

as n tends to infinity, where V is standard normally distributed.