SF3953 Markov Chains and Processes

Jimmy Olsson

Lecture 8 Limit theorems for Markov chains

21 April 2017

・ロト ・四ト ・ヨト ・ヨト

Some background: Birkhoff's ergodic theorem

Theorem (Birkhoff's ergodic theorem)

Let $(\Omega, \mathcal{A}, \mathbb{P}, T)$ be a dynamical system and Y a random variable such that $\mathbb{E}[|Y|] < \infty$. Then, \mathbb{P} -a.s.,

$$\lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} Y \circ T^k = \mathbb{E}[Y \mid \mathcal{J}].$$
(1)

< ロ > < 同 > < 回 > < 回 >

Moreover, the convergence holds in $L^1(\Omega, \mathcal{A}, \mathbb{P})$.

The following is a consequence of the classical *martingale convergence theorem*.

Theorem

Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\{\mathcal{F}_k : k \in \mathbb{N}\}$ be a filtration of \mathcal{F} . Then the sequence $\{\mathbb{E}[X \mid \mathcal{F}_k] : k \in \mathbb{N}\}$ converges \mathbb{P} -a.s. and in $L^1(\Omega, \mathcal{F}, \mathbb{P})$ to $\mathbb{E}[X \mid \mathcal{F}_{\infty}]$, where $\mathcal{F}_{\infty} = \sigma(\cup_{k=0}^{\infty} \mathcal{F}_k)$.

< ロ > < 同 > < 回 > < 回 >

Some background: CLT for martingale difference sequences

Recall that $\{(Z_k, \mathcal{F}_k) : k \in \mathbb{N}\}$ is martingale difference sequence if (i) $\mathbb{E}[|Z_k|] < \infty$ and (ii) $\mathbb{E}[Z_{k+1} | \mathcal{F}_k] = 0$ for all $k \in \mathbb{N}$.

Theorem

Let $\{(Z_k, \mathcal{F}_k) : k \in \mathbb{N}\}$ be square integrable martingale difference sequence. Assume that there exists $\sigma > 0$ such that as n tends to infinity,

$$n^{-1} \sum_{k=0}^{n-1} \mathbb{E} \left[Z_{k+1}^2 \mid \mathcal{F}_k \right] \stackrel{\mathbb{P}}{\longrightarrow} \sigma^2,$$
$$n^{-1} \sum_{k=0}^{n-1} \mathbb{E} \left[Z_{k+1}^2 \mathbb{1}_{\{|Z_{k+1}| > \delta \sqrt{n}\}} \mid \mathcal{F}_k \right] \stackrel{\mathbb{P}}{\longrightarrow} 0,$$

for all $\delta > 0$. Then $n^{-1/2} \sum_{k=0}^{n-1} Z_k \stackrel{\mathbb{P}}{\Longrightarrow} \sigma V$, where V is standard normally distributed.

