
Tentamen i 5B1575 Finansiella Derivat.
Tisdag 22 maj 2007 kl. 14.00–19.00.

Answers and suggestions for solutions.

1. (a) According to the First Fundamental Theorem the model is free
of arbitrage if and only if there exists a martingale measure. We
thus need to prove that there exist q1, q2, and q3 all strictly
between zero and one, and such that

s =
1

1 + r
[q1 · su + q2 · s + q3 · sd] ,

1 = q1 + q2 + q3.

Letting q1 act as a parameter we obtain for q2 and q3

q2 = 2(0.6 − q1), q3 = q1 − 0.2.

From this we see that all values of q1 such that 0.2 < q1 < 0.6 will
result in a martingale measure, and therefore the model is free of
arbitrage. (There are infinitely many martingale measures, but
to show that the model is free of arbitrage you only need to find
one, so if you have found one solution, say q1 = 0.3, q2 = 0.6 and
q3 = 0.1, you need not worry about the other solutions.)

(b) Since the interest rate is zero the option price is given by the
following formula

CBach(0) = EQ[max{ST − K, 0}] = EQ[(ST − K)I{ST −K≥0}].

Since

ST − K = S0 + σS0VT − K,
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we see that ST − K ∈ N(S0 − K,σ2S2
0T ). Now apply the stated

result with µ = S0 − K, “σ2 = σ2S2
0T”, l = 0, and h = ∞, and

note that 1 − Φ(x) = Φ(−x) and φ(x) = φ(−x).

(c) By definition we have that

∆call,Bach =
∂CBach

∂s
,

once you have substituted s for St in CBach. Differentiating you
will find

∆call,Bach(t) = Φ

(

St − K

σS0

√
T − t

)

.

Here we have substituted back St to obtain todays value of ∆.

If you have sold the option ∆ tells you how many you have to
buy of the underlying in order for your portfolio to become delta
neutral, i.e. insensitive to small changes in the stock price.

2. (a) We have the following equation

0 = Π(t;X) = e−r(T−t)EQ [ST − f(t;T, ST )| Ft] .

Solving for the forward price we obtain (use that f(t;T, ST ) ∈ Ft)

f(t;T, ST ) = EQ[ST |Ft].

Since S/B is a Q-martingale and Bt = ert we have that

f(t;T, ST ) = BT EQ

[

ST

BT

∣

∣

∣

∣

Ft

]

= BT
St

Bt
= er(T−t)St.

(b) The payoff of the range forward can be written as

X = max{min{ST ,K2},K1} − f(0;T, ST )
= K1 + max{ST − K1, 0} − max{ST − K2, 0} − f(0;T, ST ).

The price is therefore given by

Π(t;X) = e−r(T−t)EQ[K1 + max{ST − K1, 0}
−max{ST − K2, 0} − f(0;T, ST )|Ft]

= C(t, St,K1, T, r, σ) − C(t, St,K2, T, r, σ)

+e−r(T−t)(K1 − S0e
rT ),

where C(t, s,K, T, r, σ) denotes the standard Black-Scholes price
at time t of a European call option with exercise price K and
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expiry date T , when the current price of the underlying is s,
the interest rate is r, and the volatility of the underlying is σ.
For future use we let P (t, s,K, T, r, σ) denote the price of the
corresponding put option.

(c) Using put-call-parity at time T

max{K − ST , 0} = K + max{ST − K, 0} − ST ,

we can decompose the payoff of the range forward in the following
way instead

X = K1 + max{ST − K1, 0} − max{ST − K2, 0} − f(0;T, ST )
= max{K1 − ST } − max{ST − K2, 0} + ST − f(0;T, ST ).

From this we see that the price can also be written in the following
way

Π(t;X) = P (t, St,K1, T, r, σ) − C(t, St,K2, T, r, σ) + St − S0e
rt.

Since St −S0e
rt is the price of a forward, we see that a range for-

ward is equal to a portfolio composed of a long forward contract,
a long put with strike K1, and a short call with strike K2.

3. (a) We have

p(t, T ) = EQ

[

e−
∫

T

t
r(u)du

∣

∣

∣

∣

Ft

]

= EQ

[

e−
∫

T

t
[X1(u)+X2(u)]du

∣

∣

∣

∣

Ft

]

= EQ

[

e−
∫

T

t
(e−κ1(u−t)X1(t)+κ1θ1

∫

u

t
e−κ1(u−s)ds+σ1

∫

u

t
e−κ1(u−s)dW1(s))du×

e−
∫

T

t
(e−κ2(u−t)X2(t)+κ2θ2

∫

u

t
e−κ2(u−s)ds+σ2

∫

u

t
e−κ2(u−s)dW2(s))du

∣

∣

∣

∣

Ft

]

= e−
∫

T

t
e−κ1(u−t)du·X1(t)

e−
∫

T

t
e−κ2(u−t)du·X2(t)

EQ

[

e−
∫

T

t
(κ1θ1

∫

u

t
e−κ1(u−s)ds+σ1

∫

u

t
e−κ1(u−s)dW1(s))du×

e−
∫

T

t
(κ2θ2

∫

u

t
e−κ2(u−s)ds+σ2

∫

u

t
e−κ2(u−s)dW2(s))du

]

which shows that the zero coupon bond prices have the desired
form. (Actually the expectation can be computed directly, since
the stochastic variable in the exponential is normally distributed.)
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(b) The Itô formula applied to p(t, T ) = eA(t,T )−B(t,T )X1(t)−C(t,T )X2(t)

yields

dpT = (At − BtX1 − CtX2)p
T dt − BpTdX1 − CpTdX2

+
1

2
B2pT (dX1)

2 +
1

2
C2pT (dX2)

2

=

[

At − BtX1 − CtX2 − Bκ1(θ1 − X1) − Cκ2(θ2 − X2)

+
1

2
B2σ2

1 +
1

2
C2σ2

2

]

pT dt + . . .

=

[

At − Bκ1θ1 − Cκ2θ2 +
1

2
B2σ2

1 +
1

2
C2σ2

2

− (Bt − Bκ1)X1 − (Ct − Cκ2)X2

]

pTdt + . . .

Under Q we know that p(t, T )/B(t) is a martingale, which means
that p(t, T ) has to have local return equal to the short rate
r = X1 + X2. Thus, for t ≥ 0, and xi ∈ (−∞,∞) i = 1, 2
the following equality has to hold

[

At − Bκ1θ1 − Cκ2θ2 +
1

2
B2σ2

1 +
1

2
C2σ2

2

]

−[Bt − Bκ1 + 1]x1 − [Ct − Cκ2 + 1]x2 = 0

The only way this is possible is if all three square brackets equal
zero, this will give you the ordinary differential equations solved
by A, B, and C. The boundary conditions are obtained from the
condition that p(T, T ) = 1. So to sum up we have

{

Bt(t, T ) − B(t, T )κ1 = −1,
B(T, T ) = 0,

{

Ct(t, T ) − C(t, T )κ2 = −1,
C(T, T ) = 0,

and






At(t, T ) = κ1θ1B(t, T ) + κ2θ2C(t, T ) − 1

2
σ2

1B
2(t, T ) − 1

2
σ2

2C
2(t, T ),

A(T, T ) = 0.

4. (a) You can replicate the payoff 1/pd(T,U) at time U by buying a
domestic T -bond at time t and reinvesting the principal received
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at time T in 1/pd(T,U) domestic U -bonds. The price of a roll
bond is therefore pd(t, T ).

(b) For t ≥ T we have

Πq−roll = EQ

[

e−
∫

U

t
rd(s)ds 1

pf (T,U)

∣

∣

∣

∣

∣

Ft

]

=
1

pf (T,U)
EQ

[

e−
∫

U

t
rd(s)ds

∣

∣

∣

∣

Ft

]

=
pd(t, U)

pf (T,U)
,

where we have used that 1/pf (T,U) ∈ Ft for t ≥ T to obtain the
second equality. The price of a quanto roll bond for t ≥ T is thus
pd(t, U)/pf (T,U).

(c) We have that the value process of the portfolio is given by

V h(t) = h1(t)pd(t, U) + h2(t)p̃f (t, U) + h3(t)p̃f (t, T )

= V (t;T,U).

At time T the value process then equals

V h(T ) = V (T ;T,U) =
pd(T,U)pf (T, T )G(T ;T,U)

pf (T,U)

=
pd(T,U)

pf (T,U)
,

where we have have used that, as always, pf (T, T ) = 1, and that
G(T ;T,U) = 1. Thus the portfolio is equal to the desired claim
at time T .

It remains to check that the portfolio is self-financing, i.e. that

dV h(t) = h1(t)dpd(t, U) + h2(t)dp̃f (t, U) + h3(t)dp̃f (t, T )

or with the expressions for h1, h2 and h3 inserted

dV h(t) = V (t;T,U)

(

dpd(t, U)

pd(t, U)
− dp̃f (t, U)

p̃f (t, U)
+

dp̃f (t, T )

p̃f (t, T )

)

(1)

Using the Itô formula and that p̃f (t, S) = X(t)pf (t, S) we obtain

dp̃S
f = Xdp̃S

f + p̃S
f dX + dp̃S

f dX

= rd(t)p̃f (t, S)dt + [σ(t) + νf (t, S)]p̃f (t, S)dW,
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and inserted in to (1) we get

dV h(t) = V (t;T,U)

(

dpd(t, U)

pd(t, U)
− νf (t, U)dW + νf (t, T )dW

)

.

Now use that the dynamics of pf (t, S) to see that

dV h(t) = V (t;T,U)

(

dpd(t, U)

pd(t, U)
− dpf (t, U)

pf (t, U)
+

dpf (t, T )

pf (t, T )

+ σ(t)[νf (t, T ) − νf (t, U)]

)

.

Since V h(t) = V (t;T,U) and the dynamics in the formula above
are the same as those of V (t;T,U) given in the exercise, we con-
clude that the portfolio is self-financing and replicates the T -claim
pd(T,U)/pf (T,U).

5. If we use S as the new numeraire we know that Π/S is a martingale
under QS . Writing down the martingale property we get

Π(t)

S(t)
= ES

[

Π(T )

S(T )

∣

∣

∣

∣

Ft

]

,

where the super script S indicates that the expectation should be taken
under QS . Thus,

Π(t)

S(t)
= ES





max
{

1
T

∫ T
0 Sudu − S(T ), 0

}

S(T )

∣

∣

∣

∣

∣

∣

Ft





= ES

[

max

{

1
T

∫ T
0 Sudu

S(T )
− 1, 0

}
∣

∣

∣

∣

∣

Ft

]

= ES [max {Z(T ) − 1, 0}| Ft] .

In order to apply Feynman-Kač we need the QS-dynamics of the pro-
cess Z given by

Z(t) =
1
T

∫ t
0 S(u)du

S(t)
.
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Recall that the Girsanov kernel which takes you from Q to QS is the
volatility of S. Using this we find that the QS-dynamics of S are given
by

dSt = (r + σ2)Stdt + σStdUt,

where U is a QS-Wiener process. Let

Y (t) =
1

T

∫ t

0
Sudu, i.e. dYt =

1

T
Stdt.

The dynamics of Z can now be found by an application of the Itô
formula

dZt =
1

St

dYt −
Yt

S2
t

dSt +
1

2

2Yt

S3
t

(dSt)
2

=

(

1

T
− rZt

)

dt − σZtdUt.

Now Feynman-Kač’s theorem tells us that

Π(t)

S(t)
= F (t, Z(t)),

where F solves the PDE stated in the exercise.


