

Tentamen i 5B1575 Finansiella Derivat. Tisdag 22 maj 2007 kl. 14.00–19.00.

Examinator: Camilla Landén, tel 790 8466.

<u>Tillåtna hjälpmedel:</u> Inga.

<u>Allmänna anvisningar:</u> Lösningarna skall vara lättläsliga och **välmotiverade**. All införd notation skall vara förklarad. Problem rörande integrabilitet behöver ej redas ut.

<u>OBS!</u> Personnummer skall anges på försättsbladet. Endast en uppgift på varje blad. Numrera sidorna och skriv namn på varje blad!

25 poäng inklusive bonuspoäng ger säkert godkänt.

1. (a) Consider a one period model very similar to the one period binomial model, the only difference being that the stock price S can also stay the same with a certain probability q, as depicted in the figure below.

(b) In his thesis from 1900 Louis Bachelier suggested the following model for the (discounted) stock price under the martingale measure Q

$$dS_t = S_0 \sigma dV_t.$$

Here S_0 is the initial value of the stock, σ is a constant, and V denotes a Q-Wiener process. Suppose that the interest rate is zero so that we do not have to worry about discounting.

For t = 0 (to avoid conditional expectations) derive the following option pricing formula for a European call option on the stock with price process S, strike price K, and exercise date T

$$C_{Bach}(t) = (S_t - K)\Phi\left(\frac{S_t - K}{\sigma S_0 \sqrt{T - t}}\right) + \sigma S_0 \sqrt{T - t}\phi\left(\frac{S_t - K}{\sigma S_0 \sqrt{T - t}}\right).$$
⁽¹⁾

Here Φ and ϕ denote the standard normal distribution and density function, respectively, i.e.

Hint: You may, without proving it, use the following result about normal distributions: If $X \in N(\mu, \sigma^2)$ then

$$E[XI_{\{l \le X \le h\}}] =$$

$$= \mu \left[\Phi\left(\frac{h-\mu}{\sigma}\right) - \Phi\left(\frac{l-\mu}{\sigma}\right) \right] + \sigma \left[\phi\left(\frac{l-\mu}{\sigma}\right) - \phi\left(\frac{h-\mu}{\sigma}\right) \right]$$

where I_A denotes the indicator function of the set A.

(c) In 1900 Louis Bachelier presented the formula (1) for the price of a European call option on a stock with price process S, strike price K, and exercise date T.

2. Consider a standard Black-Scholes market, i.e., a market consisting of a risk free asset, *B*, with *P*-dynamics given by

$$\begin{cases} dB_t = rB_t dt \\ B_0 = 1, \end{cases}$$

and a stock, S, with P-dynamics given by

$$\begin{cases} dS_t = \alpha S_t dt + \sigma S_t dW_t, \\ S_0 = s_0. \end{cases}$$

Here W denotes a P-Wiener process and r, α , and σ are assumed to be constants.

(a) Recall that a forward contract on S_T contracted at time t, with time of delivery T, and with forward price $f(t; T, S_T)$ can be seen as a contingent T-claim X with payoff

$$X = S_T - f(t; T, S_T).$$

The forward price is determined at time t in such a way that the price of X is zero at time t, i.e. $\Pi(t; X) = 0$.

- Compute the forward price $f(t; T, S_T)$ in the Black-Scholes model. (3p)
- (b) A range forward is a T-claim with payoff X defined by

 $X = \max\{\min\{S_T, K_2\}, K_1\} - f(0; T, S_T),\$

where K_1 and K_2 are constants such that $K_1 < f(0;T,S_T) < K_2$ and, as before, $f(0;T,S_T)$ is the forward price of the stock for settlement at time T.

- **3.** In this exercise you will be asked to compute zero coupon bond prices in a two-factor interest rate model. Suppose that the short rate has the form

$$r(t) = X_1(t) + X_2(t),$$

where the processes X_1 and X_2 solve

$$dX_i(t) = \kappa_i [\theta_i - X_i(t)] dt + \sigma_i dW_i(t), \quad i = 1, 2.$$
(2)

Here κ_i , θ_i , and σ_i are constants for i=1,2, and W_1 and W_2 are independent Q-Wiener processes.

(a) Using that the solution to the SDE (2) is given by

$$X_i(T) = e^{-\kappa_i(T-t)}X_i(t) + \kappa_i\theta_i \int_t^T e^{-\kappa_i(T-s)}ds + \sigma_i \int_t^T e^{-\kappa_i(T-s)}dW_i(s)dt$$

show that zero coupon bond prices in this model are of the form

$$p(t,T) = e^{A(t,T) - B(t,T)X_1(t) - C(t,T)X_2(t)},$$

- 4. Suppose you wish to price a cross-currency swap. To do so suppose that the domestic risk free asset B_d , the foreign risk free asset B_f , the domestic zero coupon bond prices $p_d(\cdot, T), T \ge 0$, the foreign zero coupon bond prices $p_f(\cdot, T), T \ge 0$, and the exchange rate X, which is used to convert foreign payoffs into domestic currency, have the following dynamics under the domestic martingale measure Q^d

$$dB_{d}(t) = r_{d}(t)B_{d}(t)dt, dB_{f}(t) = r_{f}(t)B_{f}(t)dt, dX(t) = [r_{d}(t) - r_{f}(t)]X(t)dt + \sigma(t)X(t)dW(t),$$
(3)
$$dp_{d}(t,T) = r_{d}(t)p_{d}(t,T)dt + \nu_{d}(t,T)p_{d}(t,T)dW(t), dp_{f}(t,T) = [r_{f}(t) - \sigma(t)\nu_{f}(t,T)]p_{f}(t,T)dt + \nu_{f}(t,T)p_{f}(t,T)dW(t).$$

Here ν_d , ν_f , and σ are deterministic functions, and W is a standard Q^d -Wiener process. The short rates r_d and r_f are stochastic.

Now, fix T and U such that T < U. Pricing a cross-currency swap basically boils down to pricing a U-claim Z with the following payoff in domestic currency

$$Z = \frac{1}{p_f(T, U)} - \frac{1}{p_d(T, U)}.$$

You will be asked to look at the pricing in steps.

(a) Compute the domestic arbitrage free price of a (T, U) roll bond, i.e. a claim with the following payoff in domestic currency at time U

$$Y_{roll} = \frac{1}{p_d(T,U)}.$$

The expression for the price may contain any of the processes specified in equation (3), as they are considered as given. ...(4p) **Hint:** This can be done by finding a replicating portfolio for the payoff (or by computing an expectation).

(b) A (T, U) quanto roll bond is a claim with the following payoff in **domestic** currency at time U

$$Y_{q-roll} = \frac{1}{p_f(T,U)}.$$

(c) Let

$$V(t;T,U) = \frac{p_d(t,U)p_f(t,T)G(t;T,U)}{p_f(t,U)}, \text{ for } t \in [0,T]$$

where

$$G(t;T,U) = \exp\left\{\int_{t}^{T} g(u;T,U)du\right\}$$

and

$$g(t;T,U) = [\nu_f(t,U) - \nu_f(t,T)] \cdot [\sigma(t) + \nu_f(t,U) - \nu_d(t,U)]$$

This means that

$$\frac{dV(t;T,U)}{V(t;T,U)} = \frac{dp_d(t,U)}{p_d(t,U)} - \frac{dp_f(t,U)}{p_f(t,U)} + \frac{dp_f(t,T)}{p_f(t,T)} + \frac{(\nu_f(t,T) - \nu_f(t,U))\sigma(t)dt.$$

5B1575

Define the portfolio $h = (h_1, h_2, h_3)$ by

$$h_1(t) = \frac{V(t;T,U)}{p_d(t,U)}, \quad h_2(t) = -\frac{V(t;T,U)}{\tilde{p}_f(t,U)}, \quad h_3(t) = \frac{V(t;T,U)}{\tilde{p}_f(t,T)},$$

where $\tilde{p}_f(t,S) = X(t)p_f(t,S)$, i.e. the price of a foreign bond converted into domestic currency.

Suppose that you trade on the domestic market. Show that if you hold h_1 domestic *U*-bonds, h_2 foreign *U*-bonds (in the domestic market you will then actually have a position h_2 in $\tilde{p}_f(\cdot, U)$), and h_3 foreign *T*-bonds (h_3 position in $\tilde{p}_f(\cdot, T)$) this replicates the *T*-claim χ with a payoff in domestic currency given by

$$\chi = \frac{p_d(T, U)}{p_f(T, U)}.$$
(4p)

5. Consider a standard Black-Scholes market described in detail in exercise 2. Furthermore consider a contingent *T*-claim *X* with payoff

$$X = \max\left\{\frac{1}{T}\int_0^T S(u)du - S(T), 0\right\}.$$

The claim X can thus be seen as a European put option for which the strike price is determined by the arithmetic mean of the stock price. Let $\Pi(t)$ denote the price of X at time t and define

$$Z(t) = \frac{\frac{1}{T} \int_0^t S(u) du}{S(t)} \quad \text{for } t \le T.$$

Show that

$$\frac{\Pi(t)}{S(t)} = F(t, Z(t)),$$

where the function F solves the following PDE

Hint: Change numeraires and use Feynman-Kač.

Hints:

You are free to use the following in any of the above exercises.

• The density function of a normally distributed random variable with expectation m and variance σ^2 is given by

$$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-m)^2/(2\sigma^2)}.$$

• Let Φ denote the cumulative distribution function for the N(0, 1) distribution. Then

$$\Phi(-x) = 1 - \Phi(x).$$

• The standard Black-Scholes formula for the price $\Pi(t)$ of a European call option with strike price K and time of maturity T is $\Pi(t) = F(t, S(t))$, where

$$F(t,s) = s\Phi[d_1(t,s)] - e^{-r(T-t)}K\Phi[d_2(t,s)].$$

Here Φ is the cumulative distribution function for the N(0, 1) distribution and

$$d_1(t,s) = \frac{1}{\sigma\sqrt{T-t}} \left\{ \ln\left(\frac{s}{K}\right) + \left(r + \frac{1}{2}\sigma^2\right)(T-t) \right\},\$$

$$d_2(t,s) = d_1(t,s) - \sigma\sqrt{T-t}.$$

• Parameterise the Vasiček model in the following way under the risk neutral martingale measure Q

$$dr(t) = (b - ar)dt + \sigma dV.$$
(4)

Proposition 0.1 (The Vasiček term structure) In the Vasiček model, parameterised as in (4) under Q, the zero-coupon bond prices are given by

$$p(t,T) = e^{A(t,T) - B(t,T)r(t)},$$
(5)

where

$$B(t,T) = \frac{1}{a} \left\{ 1 - e^{-a(T-t)} \right\}, \tag{6}$$

$$A(t,T) = \frac{[B(t,T) - T + t](ab - \frac{1}{2}\sigma^2)}{a^2} - \frac{\sigma^2 B^2(t,T)}{4a}.$$
 (7)