
Exam in SF2975 Financial Derivatives.
Monday May 18 2009 08.00-13.00.

Answers and suggestions for solutions.

1. (a) For the martingale probabilities we have

q =
1 + r − d

u− d
= 0.5

Using them we obtain the following binomial tree where the value of the stock
is written in the nodes, and the value of the option is written in the adjacent
boxes. (The value 40 adjacent to the node with stock price 50 is obtained as
max{90 − 50, 0.5 · 15 + 0.5 · 65}.)

75100

150 7.5

28.75

4050

25

225 0

15

65

The price of the put option is thus 23.75 kr.

(b) The SDE has the solution

r(t) = e−βtr0 +

∫ t

0
e−β(t−s)αds

+ σ

∫ t

0
e−β(t−s)dWs.

Thus r(t) is normally distributed with mean m(t)

m(t) = e−βtr0 +

∫ t

0
e−β(t−s)αds

= e−βtr0 +
α

β

[

1 − e−βt
]

,
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and with variance V (t) given by

V (t) = E

[

{

σ

∫ t

0
e−β(t−s)dWs

}2
]

= σ2
∫ t

0
e−2β(t−s)ds

=
σ2

2β

[

1 − e2βt
]

(c) i. By definition a portfolio strategy is self-financing if

dV (t;h) = hB(t)dB(t) + hS(t)dS(t).

An arbitrage strategy is a self-financing strategy h such that V (0;h) = 0

P (V (T ;h) ≥ 0) = 1 and P (V (T ;h) > 0) > 0.

A replicating portfolio strategy for a T -claim X is a self-financing portfolio
such that

V (T ;h) = X, P − a.s.

ii. The model is said to be free of arbitrage if there exist no arbitrage strategies,
and complete if all claims are reachable, i.e. there exists a replicating
portfolio strategy for each claim.

2. (a) If we note that

|ST −K| = 2max{ST −K, 0} − ST +K,

we can write down the price Π of the option as

Πt = e−r(T−t)EQ[2max{ST −K, 0} − ST +K|Ft]

= 2c(t, St,K, T, r, σ) − St + e−r(T−t)K.

Here c(t, s,K, T, r, σ) denotes the standard Black-Scholes price at time t of
a European call option with exercise price K and expiry date T , when the
current price of the underlying is s, the interest rate is r, and the volatility of
the underlying is σ. Using the hints on the last page of the exam we obtain

Πt = 2
(

StN [d1(t, St)] − e−r(T−t)KN [d2(t, St)]
)

− St + e−r(T−t)K.

(b) Developing the square we have

X = φ(ST ) = (S2
T − 2KST +K2)2I{ST > K}

The two last terms you will recognize from the payoff of a standard call option
(multiplied by −2K and −K, respectively).

The price of the first term is given by

Πt = e−r(T−t)EQ
[

S2
T I{ST >K}

∣

∣

∣Ft

]

.

Since ST = Ste
Z where Z ∈ N

(

(r − σ2/2)(T − t), σ2(T − t)
)

this can be writ-
ten as

Πt = e−r(T−t)
∫ ∞

ln

{

K

St

} S2
t e

2zϕ(z)dz,
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where ϕ denotes the density of a N
(

(r − σ2/2)(T − t), σ2(T − t)
)

-distribution.
Now use that the density function for aN(m,σ2)-distributed random variable is
ϕ(z) = e−(z−m)2/(2σ2)/(σ

√
2π), and then complete the square in the exponent.

This yields

Πt = e−r(T−t)e(2r+σ2)(T−t)S2
t

∫ ∞

ln

{

K

St

} ψ(u)du,

where ψ denotes the density of aN
(

(r + 3σ2/2)(T − t), σ2(T − t)
)

-distribution.
If we let U denote a N

(

(r + 3σ2/2)(T − t), σ2(T − t)
)

-distributed random vari-
able. Then we have that

Πt = e(r+σ2)(T−t)S2
tQ

(

U > ln

{

K

St

})

= e(r+σ2)(T−t)S2
t

[

1 − Φ

(

1

σ
√
T − t

{

ln

{

K

St

}

−
(

r +
3

2
σ2

)

(T − t)

})]

= e(r+σ2)(T−t)S2
t Φ

(

1

σ
√
T − t

{

ln

{

St

K

}

+

(

r +
3

2
σ2

)

(T − t)

})

,

where we have used one of the hints to obtain the last equality.

All in all the price is thus given by

Πpc = S2
t e

(r+σ2)(T−t)Φ(d0(t, St)) − 2KstΦ(d1(t, St)) + e−r(T−t)K2Φ(d2(t, St)),

where

di(t, s) =
ln(s/K) + [r + (3/2 − i)σ2](T − t)

σ
√
T − t

for i = 0, 1, 2.

3. (a) Recall that

p(t, T ) = e−
∫

T

t
f(t,u)du.

We thus have that

p(t, T ) = eZ(t),

where

Z(t) = −
∫ T

t
f(t, u)du.

Using one of the hints we get

dZ(t) = f(t, t)dt−
∫ T

t
df(t, u)du

= r(t)dt−
∫ T

t
[α(t, u)dt + σ(t, u)dWt] du

=

[

r(t) −
∫ T

t
α(t, u)du

]

dt−
[

∫ T

t
σ(t, u)du

]

dWt

Finally using Itô’s formula on p(t, T ) = exp{Z(t)} we get

dp(t, T ) = {r(t) + b(t, T )}p(t, T )dt + a(t, T )p(t, T )dW (t),
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where


















a(t, T ) = −
∫ T

t
σ(t, u)du,

b(t, T ) = −
∫ T

t
α(t, u)du +

1

2
a2(t, T ).

Thus the bond volatility is given by

v(t, T ) = −
∫ T

t
σ(t, s)ds.

(b) Defining the process Z as

Z(t) =
p(t, S)

p(t, T )
,

we obtain

dZ = Z
{

v(t, T )2 − v(t, T )v(t, S)
}

dt+ {v(t, S) − v(t, T )} dWt.

Standard technique thus gives us

EQ
[

1

p(S, T )

∣

∣

∣

∣

Ft

]

=
p(t, S)

p(t, T )
× e

∫

T

t
{v(u,T )2−v(u,T )v(u,S)}du,

with v as above.

4. (a) On a market with dividend paying assets the normalized gain processes GZ ,

GZ
t =

Πt

Bt
+

∫ t

0

1

B(s)
dD(s),

should be martingales under the riskneutral martingale measure Q. This will
result in the following dynamics of S1 and S2 under Q







dS1
t = rS1

t dt+ σ1S
1
t dV

1
t ,

dS2
t = (r − δ)S2

t dt+ σ2ρS
2
t dV

1
t + σ2

√

1 − ρ2S2
t dV

2
t .

Here V 1 and V 2 are two independent Q-Wiener processes.

(b) From the martingale property of Π/S1 under the martingale measure using S1

as numeraire we have that

Πt = S1
tE

1

[

ΠT

S1
T

∣

∣

∣

∣

∣

Ft

]

.

Here the superindex 1 indicates that the expectation should be taken under the
martingale measure Q1 using S1 as numeraire. Using the particular form of the
claim we obtain

Πt(X) = KS1
tE

1

[

max

{

S2
T

S1
T

− 1

K
, 0

}∣

∣

∣

∣

∣

Ft

]

.

To compute the expectation we need the dynamics of S2/S1 under Q1. We
know that the likelihood process L taking us from Q to Q1 has the from

L(t) =
1

S1(0)

S1(t)

B(t)
.
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Applying the Itǒ formula to this we see that L satisfies
{

dLt = σ1LtdV
1
t + 0 · LtdV

2
t ,

L0 = 1.

The dynamics of S1 and S2 under Q1 are thus






dS1
t = (r + σ2

1)S
1
t dt+ σ1S

1
t dU

1
t ,

dS2
t = (r − δ + ρσ1σ2)S

2
t dt+ σ2ρS

2
t dU

1
t + σ2

√

1 − ρ2S2
t dU

2
t ,

where U1 and U2 are two independent Q1-Wiener processes. Now, applying
the Itǒ formula to Z = S2/S1 we obtain

dZt = − S2
t

(S1
t )2

dS1
t +

1

S1
t

dS2
t +

1

2
2
S2

t

(S1
t )3

(dS1
t )2 − 1

(S1
t )2

dS1
t dS

2
t

= −δZtdt+ (ρσ2 − σ1)ZtdU
1
t + σ2

√

1 − ρ2ZtdU
2
t .

This can be written as

dZt = −δZtdt+
√

σ2
1 + σ2

2 − 2ρσ1σ2ZtdUt,

where U is a Q1-Wiener process. We now have that

c(t, Zt, 1/K, T,−δ,
√

σ2
1 + σ2

2 − 2ρσ1σ2) = eδ(T−t)E1

[

max

{

S2
T

S1
T

− 1

K
, 0

}
∣

∣

∣

∣

∣

Ft

]

,

where c(t, s,K, T, r, σ) denotes the standard Black-Scholes price at time t of
a European call option with exercise price K and expiry date T , when the
current price of the underlying is s, the interest rate is r, and the volatility of
the underlying is σ, and thus

Πt(X) = KS1
t e

−δ(T−t)c(t, Zt, 1/K, T,−δ,
√

σ2
1 + σ2

2 − 2ρσ1σ2).

5. (a) The drift of any non-dividend paying, ideally traded price process under the
risk neutral martingale measure is equal to the short rate. This means that for
p(t, T ) we have b(t, T ) = 0 where b was computed in Exercise 3 (a). Using the
expression for b(t, T ) and taking the derivative w.r.t. T we get the HJM drift
condition

α(t, T ) = σ(t, T )

∫ T

t
σ(t, u)du.

(b) We have that

Zt =

∫ t

0
σ2(s, t)ds.

where

σ(t, T ) = η(rt)e
−

∫

T

t
κ(x)dx.
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Using the hint we obtain

Zt =

∫ t

0
σ2(s, t)ds

=

∫ t

0

[

σ2(s, s) +

∫ t

s

∂

∂u
σ2(s, u)du

]

ds

=

∫ t

0
σ2(s, s)ds+

∫ t

0

[
∫ u

0

∂

∂u
σ2(s, u)ds

]

du

where we have changed the order of integration in the last term. Now, here

σ(s, s) = η2(rs) and
∂

∂u
σ2(s, u) = −2κ(u)σ2(s, u),

so

Zt =

∫ t

0
η2(rs)ds +

∫ t

0

[

(−2)κ(u)

∫ u

0
σ2(s, u)ds

]

du

=

∫ t

0
η2(rs)ds +

∫ t

0
(−2)κ(u)Zudu.

Thus,

dZt = [η2(rt) − 2κ(t)Zt]dt.

For the short rate process we have

r(t) = f(t, t) = f(0, t) +

∫ t

0
α(s, t)ds +

∫ t

0
σ(s, t)dWs,

where

α(s, t) = σ(s, t)

∫ t

s
σ(s, u)du.

Again using the hint we obtain

rt = f(0, t) +

∫ t

0

[

α(s, s) +

∫ t

s

∂

∂u
α(s, u)du

]

ds

+

∫ t

0

[

σ(s, s) +

∫ t

s

∂

∂u
σ(s, u)du

]

dWs,

Since

α(s, s) = 0,
∂

∂u
α(s, u)du = −κ(u)α(s, u) + σ2(s, u)

σ(s, s) = η2(rs),
∂

∂u
σ(s, u) = −κ(u)σ(s, u),

we have

rt = f(0, t) +

∫ t

0

[

+

∫ t

s
{−κ(u)α(s, u) + σ2(s, u)}du

]

ds

+

∫ t

0

[

η2(rs) +

∫ t

s
{−κ(u)σ(s, u)}du

]

dWs,

= f(0, t) +

∫ t

0
[−κ(u)]

[
∫ u

0
α(s, u)ds

∫ u

0
σ(s, u)dWs

]

du+

∫ t

0

∫ u

0
σ2(s, u)dsdu

+

∫ t

0
η2(rs)dWs
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where we have changed the order of integration to obtain the last equality.
Finally, using that

−κ(u)
[
∫ u

0
α(s, u)ds

∫ u

0
σ(s, u)dWs

]

= κ(u)[f(0, u) − ru],

the definition of Z, and differentiating f(0, t) we find that

drt =

{

∂

∂t
f(0, t) + κ(t)[f(0, t) − rt] + Zt

}

dt+ η2(rt)dWt


