

EXAMINATION IN SF2980 RISK MANAGEMENT, 2009-06-08, 14:00-19:00.

Examiner: Henrik Hult, tel. 790 6911, e-mail: hult@kth.se

Allowed technical aids: calculator.

Any notation introduced must be explained and defined. Arguments and computations must be detailed so that they are easy to follow.

GOOD LUCK!

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1

Stock	day01	day02	day03	day04	day05	day06	day07	day08	day09	day10
А	0.001	-0.008	0.002	0.013	0.007	-0.019	0.019	-0.003	-0.002	-0.005

Table 1: Observed daily log-returns for stock A.

Problem 1

Consider a portfolio consisting of a long position of one share of stock A. The stock price today is $S_A = 100$. In Table 1 you find 10 observations of previous daily logreturns. The observations can be considered as outcomes of random variables X_1, \ldots, X_{10} that are assumed to be iid.

(a) Use historical simulation to compute the empirical estimate of $\text{VaR}_{0.90}(L^{\Delta})$, where L^{Δ} denotes the linearized portfolio loss over the time period today-untiltomorrow. (5 p)

(b) A colleague suggests a confidence interval for $VaR_{0.90}(L^{\Delta})$ given by

$$(100Z_{4:10}, 100Z_{1:10}),$$

where $Z_{1:10} \ge Z_{2:10} \ge \cdots \ge Z_{10:10}$ is the ordered sample based on Z_1, \ldots, Z_{10} and $Z_i = -X_i, i = 1, \ldots, 10$. Calculate the exact confidence level of this interval. (5 p)

HINT: A table of the Binomial distribution is given at the end of the exam.

Problem 2

Suppose today's value of a portfolio is 100. A qqplot of historical daily logreturns of the portfolio against a standard normal distribution is given in Figure 1. Based on the qqplot, determine an estimate of the linearized one-day Value-at-Risk for the portfolio at level 95%. (10 p)

HINT: A table of the standard normal quantiles is given at the end of the exam.

Figure 1: QQplot of the portfolio's daily logreturns and standard normal quantiles.

Problem 3

A portfolio has exposure to two different stocks, called stock A and stock B. Today's value of one share of stock A is $S_A = 50$ and one share of stock B is worth $S_B = 50$. Pairwise historical daily logreturns over the last 1000 days of the two stocks is illustrated in Figure 2.

Calculate an estimate of the linearized one-day Value-at-Risk at level 0.999 for the following portfolios.

(a) A portfolio consisting of a long position of one share in stock A and a long position of one share in stock B. (4 p)

(b) A portfolio consisting of a short position of one share in stock A and a short position of one share in stock B. (4 p)

(c) Explain why there is a significant difference in (a) and (b). (2 p)

Problem 4

Suppose the random vector (X_1, X_2) has distribution function $F(x_1, x_2)$ of the form $F(x_1, x_2) = C(\Phi(x_1), \Phi(x_2))$ where $C(u_1, u_2)$ is a copula and Φ is the standard normal distribution function. For each the following statements, determine if it is *true* or *false*. Motivate your answer!

(a) If C is a Gaussian copula with correlation parameter $\rho = 0$, then F is a spherical distribution. (5 p)

(b) If C is a t_{ν} copula with $\nu = 4$ and correlation parameter $\rho = 0.5$, then F is an elliptical distribution. (5 p)

Problem 5

Does default correlation increase risk? Consider a portfolio of n credit risks. Let X_1, \ldots, X_n be the default indicators and assume $EX_i = p$ for each $i = 1, \ldots, n$, where $p \in (0, 1)$. Let $\rho_L(X_i, X_i)$ denote the linear correlation between the default

indicators X_i and X_j and assume $\rho_L(X_i, X_j) = \rho$ for each $i \neq j$. Let $N = \sum_{i=1}^n X_i$ be the number of defaults. Suppose the distribution of N is approximated by a normal distribution with mean EN and variance $\operatorname{var}(N)$ and that Value-at-Risk, $\operatorname{VaR}_{\alpha}(N)$, is calculated using this normal approximation. In this case, is $\operatorname{VaR}_{\alpha}(N)$ increasing? or decreasing? as a function of ρ . Motivate your answer!

Figure 2: Historical logreturns for stock A and stock B over the last 1000 days.

Figure 3: Standard normal quantiles $P(X > \lambda_{\alpha}) = \alpha$ where $X \sim N(0, 1)$.

α	λ_{lpha}
0.1	1.2816
0.05	1.6449
0.025	1.9600
0.01	2.3263
0.005	2.5758
0.001	3.0902
0.0005	3.2905
0.0001	3.7190

Tables of the Binomial distribution, $P(.$	$P(X \le x)$ where $X \sim Bin(n, p)$.
--	---

n	x	p	0.05	0.10	0.15	0.20	0.25	0.30	0.40	0.50
2	0		.90250	.81000	.72250	.64000	.56250	.49000	.36000	.25000
	1		.99750	.99000	.97750	.96000	.93750	.91000	.84000	.75000
		1								
3	0		.85737	.72900	.61412	.51200	.42188	.34300	.21600	.12500
	1		.99275	.97200	.93925	.89600	.84375	.78400	.64800	.50000
	2		.99987	.99900	.99662	.99200	.98438	.97300	.93600	.87500
4	0		.81451	.65610	.52201	.40960	.31641	.24010	.12960	.06250
	1		.98598	.94770	.89048	.81920	.73828	.65170	.47520	.31250
	2		.99952	.99630	.98802	.97280	.94922	.91630	.82080	.68750
	3		.99999	.99990	.99949	.99840	.99609	.99190	.97440	.93750
		I								
5	0		.77378	.59049	.44371	.32768	.23730	.16807	.07776	.03125
	1		.97741	.91854	.83521	.73728	.63281	.52822	.33696	.18750
	2		.99884	.99144	.97339	.94208	.89648	.83692	.68256	.50000
	3		.99997	.99954	.99777	.99328	.98438	.96922	.91296	.81250
	4		1.00000	.99999	.99992	.99968	.99902	.99757	.98976	.96875
		1								
6	0		.73509	.53144	.37715	.26214	.17798	.11765	.04666	.01562
	1		.96723	.88574	.77648	.65536	.53394	.42017	.23328	.10938
	2		.99777	.98415	.95266	.90112	.83057	.74431	.54432	.34375
	3		.99991	.99873	.99411	.98304	.96240	.92953	.82080	.65625
	4		1.00000	.99995	.99960	.99840	.99536	.98906	.95904	.89063
	5		1.00000	1.00000	.99999	.99994	.99976	.99927	.99590	.98438
$\overline{7}$	0		.69834	.47830	.32058	.20972	.13348	.08235	.02799	.00781
	1		.95562	.85031	.71658	.57672	.44495	.32942	.15863	.06250
	2		.99624	.97431	.92623	.85197	.75641	.64707	.41990	.22656
	3		.99981	.99727	.98790	.96666	.92944	.87396	.71021	.50000
	4		.99999	.99982	.99878	.99533	.98712	.97120	.90374	.77344
	5		1.00000	.99999	.99993	.99963	.99866	.99621	.98116	.93750
	6		1.00000	1.00000	1.00000	.99999	.99994	.99978	.99836	.99219
8	0		.66342	.43047	.27249	.16777	.10011	.05765	.01680	.00391
	1		.94276	.81310	.65718	.50332	.36708	.25530	.10638	.03516
	2		.99421	.96191	.89479	.79692	.67854	.55177	.31539	.14453
	3		.99963	.99498	.97865	.94372	.88618	.80590	.59409	.36328
	4		.99998	.99957	.99715	.98959	.97270	.94203	.82633	.63672
	5		1.00000	.99998	.99976	.99877	.99577	.98871	.95019	.85547
	6		1.00000	1.00000	.999999	.99992	.99962	.99871	.99148	.96484
	7		1.00000	1.00000	1.00000	1.00000	.99998	.99993	.99934	.99609
0	0	I	6000 F	00=10	00100	10.000		0.400	01000	00105
9	0		.63025	.38742	.23162	.13422	.07508	.04035	.01008	.00195
	1		.92879	.77484	.59948	.43621	.30034	.19600	.07054	.01953
	2		.99164	.94703	.85915	.73820	.60068	.46283	.23179	.08984
	3		.99936	.99167	.96607	.91436	.83427	.72966	.48261	.25391
	4		.99997	.99911	.99437	.98042	.95107	.90119	.73343	.50000
	5		1.00000	.999994	.99937	.99693	.99001	.97471	.90065	.74609
	6		1.00000	1.00000	.99995	.99969	.99866	.99571	.97497	.91016
	7		1.00000	1.00000	1.00000	.99998	.99989	.99957	.99620	.98047
	8		1.00000	1.00000	1.00000	1.00000	1.00000	.99998	.99974	.99805

n	x	p	0.05	0.10	0.15	0.20	0.25	0.30	0.40	0.50
10	0		.59874	.34868	.19687	.10737	.05631	.02825	.00605	.00098
	1		.91386	.73610	.54430	.37581	.24403	.14931	.04636	.01074
	2		.98850	.92981	.82020	.67780	.52559	.38278	.16729	.05469
	3		.99897	.98720	.95003	.87913	.77588	.64961	.38228	.17188
	4		.99994	.99837	.99013	.96721	.92187	.84973	.63310	.37695
	5		1.00000	.99985	.99862	.99363	.98027	.95265	.83376	.62305
	6		1.00000	.99999	.99987	.99914	.99649	.98941	.94524	.82813
	7		1.00000	1.00000	.999999	.99992	.99958	.99841	.98771	.94531
	8		1.00000	1.00000	1.00000	1.00000	.99997	.99986	.99832	.98926
	9		1.00000	1.00000	1.00000	1.00000	1.00000	.999999	.99990	.99902
11	0		.56880	.31381	.16734	.08590	.04224	.01977	.00363	.00049
	1		.89811	.69736	.49219	.32212	.19710	.11299	.03023	.00586
	2		.98476	.91044	.77881	.61740	.45520	.31274	.11892	.03271
	3		.99845	.98147	.93056	.83886	.71330	.56956	.29628	.11328
	4		.99989	.99725	.98411	.94959	.88537	.78970	.53277	.27441
	5		.99999	.99970	.99734	.98835	.96567	.92178	.75350	.50000
	6		1.00000	.99998	.99968	.99803	.99244	.97838	.90065	.72559
	7		1.00000	1.00000	.99997	.99976	.99881	.99571	.97072	.88672
	8		1.00000	1.00000	1.00000	.99998	.99987	.99942	.99408	.96729
	9		1.00000	1.00000	1.00000	1.00000	.99999	.99995	.99927	.99414
	10		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99996	.99951
12	0		.54036	.28243	.14224	.06872	.03168	.01384	.00218	.00024
	1		.88164	.65900	.44346	.27488	.15838	.08503	.01959	.00317
	2		.98043	.88913	.73582	.55835	.39068	.25282	.08344	.01929
	3		.99776	.97436	.90779	.79457	.64878	.49252	.22534	.07300
	4		.99982	.99567	.97608	.92744	.84236	.72366	.43818	.19385
	5		.99999	.99946	.99536	.98059	.94560	.88215	.66521	.38721
	6		1.00000	.99995	.99933	.99610	.98575	.96140	.84179	.61279
	7		1.00000	1.00000	.99993	.99942	.99722	.99051	.94269	.80615
	8		1.00000	1.00000	.999999	.99994	.99961	.99831	.98473	.92700
	9		1.00000	1.00000	1.00000	1.00000	.99996	.99979	.99719	.98071
	10		1.00000	1.00000	1.00000	1.00000	1.00000	.99998	.99968	.99683
	11		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99998	.99976
19	0		51994	25410	19001	05408	09976	00060	00121	00019
15	1		.01004 96459	.20419 60194	20091	00490	19671	06267	01969	.00012
	1 9		07540	.02134 86619	.39626 60106	.23303	22260	20248	05700	01192
	2		.97549	06584	.09190	74739	58495	.20248	16858	01614
	4		00071	00354	06584	00087	.50425 70306	.42001	35304	12249
	н к		00008	00008	00947	.90007	01070	82460	55304	20052
	6		1 00000	00000	00873	.90990	.91979 07571	03762	77116	.29000
	7		1.00000	00000	00084	00875	00/35	08178	00233	$\frac{50000}{70947}$
	8		1.00000	1 00000	00008	00083	00001	00507	96792	86658
	q		1.00000	1.00000	1 00000	999999	99087	00035	9922	95386
	10		1.00000	1.00000	1.00000	1 00000	999901	00003	00868	98877
	11		1.00000	1.00000	1.00000	1.00000	1 00000	1 00000	99086	99899
	19		1 00000	1.00000	1.00000	1 00000	1.00000	1.00000	999900	99088
	14		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.999999	.33300

n	x	p	0.05	0.10	0.15	0.20	0.25	0.30	0.40	0.50
14	0		.48767	.22877	.10277	.04398	.01782	.00678	.00078	.00006
	1		.84701	.58463	.35667	.19791	.10097	.04748	.00810	.00092
	2		.96995	.84164	.64791	.44805	.28113	.16084	.03979	.00647
	3		.99583	.95587	.85349	.69819	.52134	.35517	.12431	.02869
	4		.99957	.99077	.95326	.87016	.74153	.58420	.27926	.08978
	5		.99997	.99853	.98847	.95615	.88833	.78052	.48585	.21198
	6		1.00000	.99982	.99779	.98839	.96173	.90672	.69245	.39526
	7		1.00000	.99998	.99967	.99760	.98969	.96853	.84986	.60474
	8		1.00000	1.00000	.99996	.99962	.99785	.99171	.94168	.78802
	9		1.00000	1.00000	1.00000	.99995	.99966	.99833	.98249	.91022
	10		1.00000	1.00000	1.00000	1.00000	.99996	.99975	.99609	.97131
	11		1.00000	1.00000	1.00000	1.00000	1.00000	.99997	.99939	.99353
	12		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99994	.99908
	13		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99994
	I									
15	0		.46329	.20589	.08735	.03518	.01336	.00475	.00047	.00003
	1		.82905	.54904	.31859	.16713	.08018	.03527	.00517	.00049
	2		.96380	.81594	.60423	.39802	.23609	.12683	.02711	.00369
	3		.99453	.94444	.82266	.64816	.46129	.29687	.09050	.01758
	4		.99939	.98728	.93829	.83577	.68649	.51549	.21728	.05923
	5		.99995	.99775	.98319	.93895	.85163	.72162	.40322	.15088
	6		1.00000	.99969	.99639	.98194	.94338	.86886	.60981	.30362
	7		1.00000	.99997	.99939	.99576	.98270	.94999	.78690	.50000
	8		1.00000	1.00000	.99992	.99922	.99581	.98476	.90495	.69638
	9		1.00000	1.00000	.99999	.99989	.99921	.99635	.96617	.84912
	10		1.00000	1.00000	1.00000	.99999	.99988	.99933	.99065	.94077
	11		1.00000	1.00000	1.00000	1.00000	.99999	.99991	.99807	.98242
	12		1.00000	1.00000	1.00000	1.00000	1.00000	.999999	.99972	.99631
	13		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99997	.99951
	14		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99997
				10500						
16	0		.44013	.18530	.07425	.02815	.01002	.00332	.00028	.00002
	1		.81076	.51473	.28390	.14074	.06348	.02611	.00329	.00026
	2		.95706	.78925	.56138	.35184	.19711	.09936	.01834	.00209
	3		.99300	.93159	.78989	.59813	.40499	.24586	.06515	.01064
	4		.99914	.98300	.92095	.79825	.63019	.44990	.16657	.03841
	5		.99992	.99670	.97646	.91831	.81035	.65978	.32884	.10506
	6		.999999	.99950	.99441	.97334	.92044	.82469	.52717	.22725
	7		1.00000	.99994	.99894	.99300	.97287	.92565	.71606	.40181
	8		1.00000	.999999	.99984	.99852	.99253	.97433	.85773	.59819
	9		1.00000	1.00000	.99998	.99975	.99836	.99287	.94168	.77275
	10		1.00000	1.00000	1.00000	.99997	.99971	.99843	.98086	.89494
	11		1.00000	1.00000	1.00000	1.00000	.99996	.99973	.99510	.96159
	12		1.00000	1.00000	1.00000	1.00000	1.00000	.99997	.99906	.98936
	13		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99987	.99791
	14		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99999	.99974
	15		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	.99998

Problem 1

(a) The historical simulation estimate of VaR_{0.9}(L^{Δ}) is $L^{\Delta}_{[10(1-0.9)]+1:10} = L^{\Delta}_{2:10}$ where $L^{\Delta}_{i} = -S_{A}X_{i} = 100Z_{i}$. That is, the estimate is $\hat{q}_{0.9} = 100Z_{2,10} = 0.8$.

(b) The interval can miss the true value $q_{0.9}$ either to the left (too few large losses) or to the right (too many large losses). The probability that it misses to the left is $P(Z_{1,10} \leq q_{0.9}) = P(Bin(10, 0.1) = 0) = 0.345$ and the probability that it misses to the right is $P(Z_{4,10} > q_{0.9}) = 1 - P(Bin(10, 0.1) \leq 3) = 0.013$. So confidence level is 1 - 0.345 - 0.013 = 0.642.

Problem 2

The qqplot plots the standard normal quantiles (x-axis) versus the empirical quantiles of the portfolio logreturns (y-axis). The points of the qqplot is of the form $(\Phi^{-1}(p_i), F_n^{\leftarrow}(p_i))$ for a number of different $p_i \in (0, 1)$. We will assume the empirical quantile $F_n^{\leftarrow}(p_i)$ is close to the true quantile of portfolio logreturns. If X denotes a daily portfolio logreturn, then the linearized one day loss is given by $L^{\Delta} = -100X$ and $\operatorname{VaR}_{0.95}(L^{\Delta}) = 100 \operatorname{VaR}_{0.95}(-X)$. To find $\operatorname{VaR}_{0.95}(-X)$ we see from the table that the standard normal 95%-quantile is 1.63. Thus, $\operatorname{VaR}_{0.95}(-X)$ is the y-value in the qqplot that corresponds to -1.63 on the x-axis. That is, $\operatorname{VaR}_{0.95}(-X) \approx 0.045$ and $\operatorname{VaR}_{0.95}(L^{\Delta}) \approx 4.5$.

Problem 3

(a) Here $L^{\Delta} = -50(X_A + X_B)$ where X_A and X_B are the daily logreturns. We see that large negative values of $X_A + X_B$ lead to large losses. Since [1000(1-0.999)]+1 = 2 the empirical estimate is $L^{\Delta}_{2:1000}$. Looking in the lower left corner of the sample we see that $L^{\Delta}_{2:1000} \approx -50(-0.07 - 0.075) = 7.25$.

(b) Here $L^{\Delta} = 50(X_A + X_B)$ where X_A and X_B are the daily logreturns. We see that large positive values of $X_A + X_B$ lead to large losses. Since [1000(1 - 0.999)] + 1 = 2the empirical estimate is $L^{\Delta}_{2:1000}$. Looking in the upper right corner of the sample it is a difficult by eyesight to determine exactly which point that corresponds to $L^{\Delta}_{2:1000}$. However, all candidates will give approximately the same value for the sum $X_A + X_B$. We selected $L^{\Delta}_{2:1000} \approx 50(0.055 + 0.04) = 4.25$.

(c) The difference is large because the dependence is strong in the lower tail (where X_A and X_B are negative). The plot indicate that there may be a strong lower tail dependence. In contrast the dependence is weak in the upper tail (where X_A and X_B are positive). The plot indicate weak or zero upper tail dependence.

Problem 4

(a) True: F is the distribution function of a standard normal distribution which is spherical. (b) False, if the distribution is elliptical then the marginal distributions and the copula must be elliptical with the same generator (same distribution of R).

Problem 5

The variance of N can be calculated as

$$\operatorname{var}(N) = EN^{2} - (EN)^{2} = E\left(\sum_{i=1}^{n}\sum_{j=1}^{n}X_{i}X_{j}\right) - (np)^{2}$$
$$= \sum_{i=1}^{n}EX_{i}^{2} + \sum_{i=1}^{n}\sum_{j\neq i}E(X_{i}X_{j}) - (np)^{2}$$
$$= np + n(n-1)[\rho p(1-p) + p^{2}] - (np)^{2}.$$

This is increasing in ρ . By the normal approximation we have

$$\operatorname{VaR}_{\alpha}(N) \approx EN + \sqrt{\operatorname{var}(N)} \Phi^{-1}(\alpha),$$

which is increasing in var(N) and hence increasing in ρ .