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KTH Matematik

EXAMINATION IN SF2980 RISK MANAGEMENT, 2014-03-10, 08:00-13:00.
Examiner: Henrik Hult, tel. 790 6911, e-mail: hult@kth.se

Allowed technical aids: FEverything except computers and communication devices.
All books, notes, and similar are allowed. A calculator is necessary.

Any notation introduced must be explained and defined. Assumptions must be
clearly stated. Arguments and computations must be detailed so that they are easy
to follow.

GoOD LUckK!

Problem 1

An investor invests 100 SEK in a long position of a share of a Swedish stock that
does not pay dividends. A quantile-quantile-plot of 48 historical monthly log-returns
of the share price against a standard normal distribution is displayed in Figure 1.
Compute the Expected Shortfall at level 0.01 of the net value (Vs — VyRy) of the
investment over one year. The continuously compounded annual interest rate is
assumed to be 3% (Ry = €%%). A table of the normal distribution is given at the
end of the exam.

You are welcome to make well motivated assumptions. All assumptions made must
be clearly stated. (10 p)

Problem 2

Suppose X = (X1, X5)T has an elliptical distribution with dispersion matrix Y. Four
independent samples from the distribution of X are illustrated in Figure 2. Estimate
the linear correlation parameter
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Figure 1: Quantile-quantile plot of monthly log-returns against standard normal
distribution (Problem 1).
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Figure 2: Four independent samples from the distribution of X (Problem 2).
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Problem 3

Let L; and L, be independent random variables, representing losses, both with

distribution function F(x) = e Ve ,x > 0. Determine which of the portfolios L; + Lo
and 2L, which is riskiest by determining whether the limit

. P(Ll + Ly > l‘)
lim
o0 P(2Ly > 1)

is greater than 1, smaller than 1, or equal to 1. (10 p)

Problem 4

A trader is betting on changes in implied volatility from time 0 today until time
t > 0 in the future. Consider two call options on the value of a stock index with
maturity in one year and two years respectively. Both options have strike K, at
the money, and in particular Sy = K = 100, where S is the current value of the
underlying stock index. The trader believes that over a short period of time, from 0

to t < T the change in implied volatility for the nearer maturity, X = o} — o, will

be smaller than for the more distant maturity, Y = o7 — 03. Here o = 0.50 and
o2 = 0.55. The trader wants to capitalize in this belief without betting on other

potential movements of the underlying stock index.

You may suppose that the interest rate is 0 and that (X,Y) has a joint normal
distribution with E[X]| =0, E[Y] = 0.02, Var(X) = 2.5-1073, Var(Y) = 3.0- 1073
and Cor(X,Y) = 0.9. The prices of the call options are given by Black-Scholes for-
mula with the corresponding implied volatilities.

Consider a portfolio with the amount kg in cash (on a zero-interest bank account),
hy units of the underlying stock index, ho, number of call options with maturity in
one year and hs number of call options with maturity in two years.

Determine the portfolio hg, hi, ho, h3, having the desired properties, and such that
the portfolio has zero initial value and the Value-at-Risk at level 0.05, for the in-
vestment from today until time ¢, is 10.

You may use linearization. If you cannot compute standard normal densities you
may use ¢(0.025) = 0.4, where ¢ is the standard normal density. (10 p)



cont. examination in SF2980 2014-01-14 4

Problem 5

In this problem you will show that a latent variable model with a Clayton copula
can be identified with a Bernoulli mixture model.

Let I4, ..., I, be default indicators modelled by a latent variable model in the follow-
ing way. Let (Y1,...,Y,) have identically distributed marginal distributions, that
is, Y% has distribution function F' for each k, and a Clayton copula C' given by

C(Ul,...,un) = (u1_6++u,:0+n— 1)—1/6.

Put I = I{Y}; < d} where d = F~!(p) and p is the individual default probability.

A Bernoulli mixture model with mixture variable Z is a model for default indi-
cators Ji,...,J, such that Jy,...,J, are conditionally independent, given Z, with
PlJ.=1|2)="Z.

have the

Determine the distribution of Z such that (Iy,...,1I,) and (Jy,...,J,)
=1,...,n, it

same distribution. That is, for any (i1,...,4,) with i, € {0,1}, k
holds that

P([1:Z177[n:Zn):P(J1:ZI77Jn:Zn)
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TABLE A; STANDARD NORMAL PROBABILITIES (CONTINUED)

Figure 3: Standard Normal distribution
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