
Avd. Matematisk statistik

TENTAMEN I SF2945 TIME SERIES ANALYSIS/TIDSSERIEANALYS
FREDAGEN DEN 4 JUNI 2010 KL 08.00–13.00.

Examinator : Timo Koski, tel. 7907134

Till̊atna hjälpmedel : Formulas and survey, Time series analysis. Handheld calculator.

Införda beteckningar skall förklaras och definieras. Resonemang och uträkningar skall vara
s̊a utförliga och väl motiverade att de är lätta att följa.

Varje korrekt lösning ger 10 poäng. Gränsen för godkänt är 25 poäng. De som erh̊aller 23
eller 24 poäng p̊a tentamen kommer att erbjudas möjlighet att komplettera till betyget E.
Den som är aktuell för komplettering skall till examinator anmäla önskan att f̊a en s̊adan
inom en vecka fr̊an publicering av tentamensresultatet.

Lösningarna f̊ar givetvis skrivas p̊a svenska.

Resultatet skall vara klart senast torsdag den 25 juni 2010 och blir tillgängligt via ”Mina
sidor”.

Lösningarna f̊ar givetvis skrivas p̊a svenska.
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Quantiles of the normal distribution
(Normalfördelningens kvantiler)

P (X > λα) = α where X ∼ N(0, 1)

α λα α λα

0.10 1.2816 0.001 3.0902
0.05 1.6449 0.0005 3.2905
0.025 1.9600 0.0001 3.7190
0.010 2.3263 0.00005 3.8906
0.005 2.5758 0.00001 4.2649
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Problem 1

The process {Xt | t = 0,±1,±2, . . .} satisfies the equation

Xt −
9

20
Xt−1 +

1

20
Xt−2 = Zt,

where Zt ∼ WN(0, σ2).

(a) Show that {Xt | t = 0,±1,±2, . . .} is a stationary and causal AR(2) -process. (3 p)

(b) In view of (a) we can write the autocovariance function (ACVF) of the process {Xt |
t = 0,±1,±2, . . .} as

γX(h) = Cov (Xt+h, Xt) , |h| = 0,±1,±2, . . . ,

Show by a detailed argument that γX(h) satisfies for h ≥ 2 the following homogeneous
linear difference equation with constant coefficients

γX(h)− 9

20
γX(h− 1) +

1

20
γX(h− 2) = 0. (1)

(3 p)

(c) Use (1) to show that
lim

h→+∞
γX(h) = 0.

Note that you do not need to determine explictly the initial conditions γX(1) and γX(0)
for this. (4 p)

Problem 2

The MA(2) - process {Xt | t = 0,±1,±2, . . .} satisfies

Xt = Zt +
1

2
Zt−1 +

1

4
Zt−2,

where Zt ∼ WN(0, 1) is a Gaussian white noise.

(a) Find the probability distribution of the column vector (Xt+2, Xt+1, Xt)
T . Explain care-

fully your reasoning and show your calculations. (4 p)

(b) Find the probability distribution of the column vector (Xt+12, Xt+11, Xt+10)
T . Show your

reasoning. (1 p)

(c) Find a constant a such that

P (Xt+2 > a | Xt+1 = 1.0) = 0.90.

(5 p)
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Problem 3

(Xt)
∞
t=−∞ is an MA(1)-process

Xt = Zt + Zt−1,

where (Zt)
∞
n=−∞ is an I.I.D. process with the distribution given by the probability density

fZ(z) =

{
0 z < −1
e−(z+1) z ≥ −1.

Then it holds that probability density of Xt is

fXt(x) =

{
0 x < −2
(x+ 2)e−(x+2) x ≥ −2.

You need not show this.

(a) Check that the conditional density of Zt given that Xt = c is

fZt|Xt=c(z) =

{
1

c+2
−1 ≤ z < c+ 1

0 elsewhere.

(4 p)

(b) Show that

E [Zt | Xt = c] =
c

2
.

(2 p)

(c) Show that

E [Xt+1 | Xt = c] =
c

2
.

(4 p)
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Problem 4

Let {Yt}∞t=−∞ be a linear process with

Yt =
∞∑

j=−∞

ψjXt−j, t ∈ {0,±1,±2, . . . , },

where {Xt}∞t=−∞ is a stationary time series with mean zero and spectral density fX(λ), and∑∞
j=−∞ | ψj |< ∞. We know that the autocovariance function (ACVF) of {Yt}∞t=−∞ is for

h ≥ 0

γY (h) =
∞∑

j=−∞

∞∑
k=−∞

ψjψkγX(h+ k − j),

where γX (·) is the ACVF of {Xt}∞t=−∞. Show that the spectral density fY (λ) of {Yt}∞t=−∞ is

fY (λ) =| Ψ
(
e−iλ

)
|2 fX(λ),

where Ψ
(
e−iλ

)
=
∑∞

j=−∞ ψje
−ijλ. (10 p)

Problem 5

We have an AR(1) process

Xn = φXn−1 + Zn, n = 0, 1, 2, . . . , (2)

where | φ |< 1, {Zn} ∼ WN(0, σ2). We assume that Var(X0) = σ2
0. The true state Xn is not

observed directly, but we observeXn with added white measurement noise {Vn}∼ WN(0, σ2
V ),

as Yn in
Yn = cXn + Vn, n = 0, 1, 2, . . . , (3)

The white noises {Zn} and {Vn} are independent processes.

(a) Find the predictor X̂n+1 = E [Xn+1 | Y0, Y1, . . . , Yn] by the Kalman recursions. Hint: You
may apply in a straightforward manner the collection of formulas. (5 p)

(b) What is the Riccati equation for this predictor and what quantity does it give ? What
is the computational advantage of the Riccati equation in recursive prediction ? (4 p)

(c) Give the innovations form of the predictor X̂n+1 = E [Xn+1 | Y0, Y1, . . . , Yn]. (1 p)
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Problem 1

(a) We note that the linear stochastic difference equation with constant coefficients

Xt −
9

20
Xt−1 +

1

20
Xt−2 = Zt,

can be written as
φ(B)Xt = Zt,

where

φ(B) = 1− 9

20
B +

1

20
B2.

In order to answer the question about ARMA(2) we consider zeros of the polynomial
φ(z) for z ∈ C,

φ(z) = 1− 9

20
z +

1

20
z2.

We get that

φ(ξi) = 0 ⇔ ξ1 = 4, ξ2 = 5 ⇔ φ(z) =
(
1− z

4

)(
1− z

5

)
.

Thus we see that all roots of φ(z) = 0 are satisfy | z |6= 1. Hence {Xt | t =
0,±1,±2, . . .} is stationary. The roots of φ(z) = 0 satisfy | z |> 1. By definition
this means that {Xt | t = 0,±1,±2, . . .} is a causal process.

(b) Since {Xt | t = 0,±1,±2, . . .} is stationary

E [Xt] = µ.

Hence

E [Xt]−
9

20
E [Xt−1] +

1

20
E [Xt−2] = E [Zt]

⇔

µ

[
1− 9

20
+

1

20

]
= 0,

which means that
µ = 0.

Hence
γX(h) = Cov (Xt+h, Xt) = E [Xt+hXt] .
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We multiply by Xt−h and take the expectations:

E [XtXt−h]−
9

20
E [Xt−1Xt−h] +

1

20
E [Xt−2Xt−h] = E [ZtXt−h]

Since the process is causal, we have that Xt−h is for h ≥ 2 noncorrelated with Zt and

E [Xt−hZt] = E [Xt−h] · E [Zt] = 0 · 0.

Thus we have from the above, e.g., that

E [Xt−1Xt−h] = Cov (Xt−1, Xt−h) = γX(h− 1)

therefore we get (1), i.e.,

γX(h)− 9

20
γX(h− 1) +

1

20
γX(h− 2) = 0.

(c) We shall find the general solution to (1). We make the standard Ansatz

zh = zh.

We inser this in (1) and get

zh − 9

20
zh−1 +

1

20
zh−2 = 0 ⇔ 1− 9

20
z−1 +

1

20
z−2 = 0 ⇔ z2 − 9

20
z +

1

20
= 0 ⇔

z1 =
1

4
, z2 =

1

5
.

Then

γX(h) = c1

(
1

4

)h

+ c2

(
1

5

)h

where c1 and c2 are two constants to be determined by the initial conditions. But since
|1
4
| < 1 and |1

5
| < 1, we get directly that

lim
h→+∞

γX(h) = 0.

Problem 2

(a) Since MA(2) - process {Xt | t = 0,±1,±2, . . .} satisfies

Xt = Zt +
1

2
Zt−1 +

1

4
Zt−2,

it is stationary. As Zt ∼ WN(0, 1) is a Gaussian white noise, the process {Xt | t =
0,±1,±2, . . .} is Gaussian. Therefore {Xt | t = 0,±1,±2, . . .} n, the probability dis-
tribution of the column vector (Xt+2, Xt+1, Xt)

T is multivariate normal.

We have

E [Xt] = E [Zt] +
1

2
E [Zt−1] +

1

4
E [Zt−2] = 0,
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and therefore the mean vector of (Xt+2, Xt+1, Xt)
T is the 3 × 1 zero vector. Thus we

have Xt+2

Xt+1

Xt

 ∼ N3

0
0
0

 ,

γ(0) γ(1) γ(2)
γ(1) γ(0) γ(1)
γ(2) γ(1) γ(0)


where the entries of the covariance matrix are obtained from the ACVF. A straight-
forward computation using

E

[
Zt+h +

1

2
Zt+h−1 +

1

4
Zt+h−2

] [
Zt +

1

2
Zt−1 +

1

4
Zt−2

]
for h = 0, 1, 2 gives

γ(0) = 1 +

(
1

2

)2

+

(
1

4

)2

=
21

16

γ(1) =
1

2
+

1

2

1

4
=

5

8

γ(2) =
1

4
.

C.f., Brockwell & Davis Example 3.2.2 on p. 89.

ANSWER (a) :

Xt+2

Xt+1

Xt

 ∼ N3

0
0
0

 ,

21
16

5
8

1
4

5
8

21
16

5
8

1
4

5
8

21
16


(b) Because the stationary process {Xt | t = 0,±1,±2, . . .} is Gaussian, it is also strictly sta-

tionary. This means amongst other things that the distribution of (Xt+2, Xt+1, Xt+10)
T

is not changed by a common shift of the time indices. As (Xt+12, Xt+11, Xt+10)
T con-

tains these random variables shifted by ten time units, we get the answer.

ANSWER (b):

Xt+12

Xt+11

Xt+10

 ∼

Xt+2

Xt+1

Xt

 .

(c) By strict stationarity we need to find a constant a such that

P (Xt+1 > a | Xt = 1.0) = 0.95,

we need to find probability distribution of Xt+1 | Xt = 1.0. As the process {Xt | t =
0,±1,±2, . . .} is Gaussian, the joint distribution of (Xt+1, Xt)

T is a bivariate normal
distribution. We have by Collection of Formulas,

Xt+1 | Xt = 1.0 ∼ N

(
ρ
σXt+1

σXt

, σ2
Xt+1

(
1− ρ2

))

where, as means are zero, and from part (a) σXt+1 = σXt =
√
γ(0) =

√
21
16

and the

coefficient of correlation is by part (a)

ρ =
γ(1)

γ(0)
=

5
8
21
16

=
10

21
.



forts tentamen i SF2945 10-06-04 4

Thereby
Xt+1 | Xt = 1 =

∼ N

(
10

21
,
21

16

(
1−

(
10

21

)2
))

= N

(
10

21
, 1.0149

)
.

Then

P (Xt+1 > a | Xt = 1.0) = P

(
Xt+1 − 10

21√
1.0149

>
a− 10

21√
1.0149

| Xt = 1.0

)
and since now

Xt+1− 10
21√

1.02
| Xt = 1.0 ∼ N(0, 1), we obtain

= P

(
ξ >

a− 10
21√

1.02

)
,

where ξ ∼ N(0, 1). Hence we want to find a such that

P

(
ξ >

a− 10
21√

1.02

)
= 0.90.

By the table on N(0, 1) we have that
a− 10

21√
1.02

= λ0.90, where by symmetry λ0.90 = −λ0.10

and
P (ξ > −λ0.10) = 0.90,

and λ0.10 = 1.2816 is given in the Quantiles of the normal distribution recapitulated in
the ingress.

In other words,

a = −λ0.10

√
1.02 +

10

21
= −1.2816

√
1.02 +

10

21
= −0.8182

ANSWER: a = −0.8182.

Problem 3

(a) By definition of conditional density we get

fZt|Xt=c(z) =
fXt|Zt=z(c)fZt(z)

fXt(c)

But if Xt = c and Zt = z, then Zt−1 = c− z and therefore

fXt|Zt=z(c) = fZt−1(c− z)

We have thus with Zt−1 = x that c− z = x ≥ −1, i.e., c+ 1 ≥ z. For these c and z

fXt|Zt=z(c)fZt(z)

fXt(c)
=
fZt−1(c− z)fZt(z)

fXt(c)

=
e−(c−z+1)e−(z+1)

(c+ 2)e−(c+2)

=
e−(c+2)

(c+ 2)e−(c+2)
=

1

c+ 2
.

The sought density = 0 as soon as z < −1.
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(b) Show that

E [Zt | Xt = c] =

∫ c+1

−1

zfZt|Xt=c(z)dz =

=
1

c+ 2

∫ c+1

−1

zdz =
1

2(c+ 2)

[
z2
]c+1

−1
=

1

2(c+ 2)

(
(c+ 1)2 − (−1)2

)
=

1

2(c+ 2)

(
c2 + 2c+ 1− 1

)
=

c

2(c+ 2)
(c+ 2) =

c

2
.

(c)

E [Xt+1 | Xt = c] = E [Zt+1 + Zt | Xt = c] =
c

2
.

= E [Zt+1 | Xt = c] + E [Zt | Xt = c]

= E [Zt+1] +
c

2
,

since Zt+1 is independent of Xt and by part (b). Here

E [Zt+1] =

∫ ∞

−1

ze−(z+1)dz = e−1

∫ ∞

−1

ze−zdz

= e−1

{[
−ze−z

]∞
−1

+

∫ ∞

−1

e−zdz

}
= e−1

{
−e1 +

[
−e−z

]∞
−1

}
= e−1

{
−e1 + e1

}
= 0.

Hence
E [Zt | Xt = c] =

c

2
.

Problem 4

The result was earlier at KTH known under the name superfomula. The required proof is
found on pp. 129−130 in Brockwell & Davis.

Problem 5

(a) This assignment asks one to simply identify the timevariant matrices in the Formulas
and survey in the scalar and timeinvariant case as follows:

Ft ↔ φ

Qt ↔ σ2

Gt ↔ c

Rt ↔ σ2
V .

Ωt ↔ E
[
e2n+1

]
.
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A matrix transpose like F T
t boils down to the scalar itself, and

FtΩtF
T
t ↔ φ2E

[
e2n+1

]
FtΩtG

T
t ↔ φcE

[
e2n
]
.

4t = GtΩtG
T
t +Rt ↔4n = c2E

[
e2n
]
+ σ2

V

Then the desired predictor X̂n+1 = E [Xn+1 | Y0, Y1, . . . , Yn] is computed recursively by
the Kalman recursions obtained by the identifications above from the Formulas and
survey,

X̂n+1 = φX̂n +
θn

4n

εn, (4)

where
εn = Yn − cX̂n, (5)

and
en+1 = Xn+1 − X̂n+1,

and

E
[
e2n+1

]
= φ2E

[
e2n
]
+ σ2 − θ2

n

4n

, (6)

where
E
[
e20
]

= σ2
0, (7)

and
θn = φcE

[
e2n
]
, (8)

and
4n = σ2

V + c2E
[
e2n
]
. (9)

(b) The Riccati equation is (6), and it gives a nonlinear difference equation for the variance
E
[
e2n+1

]
of the prediction error

en+1 = Xn+1 − X̂n+1.

A computational advantage is that the Riccati equation does not depend on the ob-
served time series, and can therefore be precomputed (when values of parameters are
known) prior to any prediction.

(c) The innovation variables are

εn =
[
Yn − cX̂n

]
.

Here εn is the part of Yn which is not exhausted by cX̂n. Then the prediction has an
innovations representation

X̂n+1 = φX̂n +K(n)εn

Yn = cX̂n + εn,

where

K(n) =
θn

4n

is the Kalman gain.


