
KTH Mathematics

Examination in SF2943/SF2945 Time Series Analysis, August 25, 2014, 08:00–13:00.

Examiner : Filip Lindskog, tel. 790 7217, e-mail: lindskog@kth.se

Allowed aids : Pocket calculator, “Formulas and survey, Time series analysis” by
Jan Grandell, without notes.

Any notation introduced must be explained and defined. Arguments and computa-
tions must be detailed so that they are easy to follow.

The formulas
∑n

k=1 k = n(n+1)/2 and
∑n

k=1 k
2 = n(n+1)(2n+1)/6 may be useful.

- - - - - - - - - - - - - - - - - - - -

Problem 1

Consider a causal AR(1) process {Xt}. Due to imperfect measurement equipment,
the prediction of Xt+2 is based on noisy observations Ys for s ≤ t. Let

Xt = φXt−1 + Zt, {Zt} ∼WN(0, σ2
z),

Yt = Xt +Wt, {Wt} ∼ IID(0, σ2
w),

where the noise sequences {Zt} and {Wt} are independent.

(a) Determine the best linear predictor (minimizing the mean squared prediction
error) of Xt+2 based on Yt, Yt−1. (5 p)

(b) Explain why the expression for the predictor is reasonable/expected in the case
when σz is much larger than σw and in the case when σw is much larger than σz.(5 p)

Problem 2

Consider the following estimates, for lags 0, 1, . . . , 7, of the ACVF and PACF based
on a sample of size 1000 from a stationary time series:

ACVF 0.620 -0.200 0.005 -0.013 0.005 -0.012 -0.028 0.017

PACF 1 -0.323 -0.107 -0.060 -0.021 -0.028 -0.070 -0.017

Suggest an AR(p) or MA(q) model and estimate its parameters. (10 p)

Problem 3

Consider a causal AR(2) process Xt = φ1Xt−1 + φ2Xt−2 + Zt, {Zt} ∼ WN(0, σ2).
Determine the best linear predictor of Xt+1 based on Xt, Xt−1, Xt−2. (10 p)

Problem 4

Consider the ARMA(1, 1) process Xt − 0.5Xt−1 = Zt + 1.5Zt−1, {Zt} ∼WN(0, 1).

(a) Express {Xt} as an infinite order moving average process. (5 p)

(b) Compute the variance of {Xt}. (5 p)

Problem 5

Consider a time series expressed as a sum of a linear trend and IID(0, σ2) noise {Xt}.
Without removing the trend, for a given lag, the sample autocorrelation based on a
sufficiently large sample will be close to one. Make this claim plausible. You may
use that, with probability one, n−3

∑n
t=1 tXt ≈ 0 for n sufficiently large. (10 p)
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Problem 1

(a) Due to zero means, E[Xt] = E[Yt] = 0 for all t, we look for the best linear

predictor of the form X̂t+2 = a1Yt + a2Yt−1. Notice that(
Cov(Yt, Yt) Cov(Yt, Yt−1)
Cov(Yt−1, Yt) Cov(Yt−1, Yt−1)

)
=

(
γ(0) + σ2

w γ(1)
γ(1) γ(0) + σ2

w

)
,

Cov(Yt, Yt+2) = γ(2) and Cov(Yt−1, Yt+2) = γ(3), where γ is the ACVF of {Xt}.(
a1
a2

)
=

(
γ(0) + σ2

w γ(1)
γ(1) γ(0) + σ2

w

)−1(
γ(2)
γ(3)

)
=

1

(γ(0) + σ2
w)2 − γ(1)2

(
γ(0) + σ2

w −γ(1)
−γ(1) γ(0) + σ2

w

)(
γ(2)
γ(3)

)
.

With γ(h) = cφh, where c = σ2
z/(1− φ2), we get(

a1
a2

)
=

1

c2(1− φ2) + σ2
w(2c+ σ2

w)

(
c2φ2(1− φ2) + σ2

wcφ
2

σ2
wcφ

3

)
=

φ2σ2
z

σ4
z + σ2

w(2σ2
z + σ2

w(1− φ2))

(
σ2
z + σ2

w

σ2
wφ

)
.

(b) In particular, for σw << σz we have(
a1
a2

)
≈
(
φ2

0

)
(the usual two-step predictor for an AR(1)) and for σw >> σz we have(

a1
a2

)
≈
(

0
0

)
(the signal drowns in the noise and the best predictor is simply the zero mean).

Problem 2

If the time series data were iid data, then the sample ACF values γ̂(h)/γ̂(0), h ≥ 1,
would be approximately iid and with absolute values exceeding 1.96/

√
1000 ≈ 0.062

with a probability of approximately 0.05. We observe an exceedance for h = 1
whereas the other sample ACF values are, in absolute values, much smaller than
0.062. The observed sample ACF values suggest an MA(1) process.
The sample PACF values do become much smaller (in absolute values) from some
lag onwards. Therefore the sample PACF values do not suggest an AR(p) process
of reasonably small order p.
We may estimate the parameters θ, σ of the suggested MA(1) process Xt = Zt +
θZt−1, {Zt} ∼ WN(0, σ2) by equating γ̂(h), h = 0, 1, with there theoretical coun-
terparts and solving the equation system. Here, γ(0) = (1 + θ2)σ2 and γ(1) = θσ2,
which yields

θ

1 + θ2
= − 0.2

0.62
.
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Note that 0.62/0.2 = 3.1 and that the equation θ2 + 3.1θ + 1 = 0 has the solutions

θ = −1.55±
√

1.552 − 1,

i.e. θ = −2.734272 and θ = −0.3657281. The latter solution is preferable since it
corresponds to an invertible MA(1) process. Now, γ̂(1) = θσ2, with θ = −0.3657281,

yields σ = 0.739496. Summing up, we get the parameter estimates θ̂ ≈ −0.37 and
σ̂ ≈ 0.74. (The sample was generated from an MA(1) process with θ = −0.4 and
σ = 0.7.)

Problem 3

F&S p. 12: For a stationary zero-mean time series, P (Xt+1 | Xt, . . . , Xt−n+1) =
a1Xt + · · ·+ anXt−n+1, where a = (a1, . . . , an)′ solves Γna = γn, i.e. γ(0) . . . γ(n− 1)

...
. . .

...
γ(n− 1) . . . γ(0)


 a1

...
an

 =

 γ(1)
...
γ(n)

 .

F&S p. 19: For a causal zero-mean AR(p) process, Γpφ = γp, where φ = (φ1, . . . , φp)
′

(the Yule-Walker equations). In particular, for n ≥ p the coefficients ak of the best
linear 1-step predictor satisfy ak = φk for k ≤ p and ak = 0 for k > p. In particular,
for the AR(2) process, P (Xt+1 | Xt, Xt−1, Xt−2) = φ1Xt + φ2Xt−1.

Problem 4

Here φ(z) = 1 − φz and θ(z) = 1 + θz have no common zeros and φ(z) 6= 0 for
|z| ≤ 1. Therefore (Def. 6.5 and Thm 6.1 on p. 9 in F&S) {Xt} is causal (hence
also stationary) with representation

Xt =
∞∑
j=0

ψjZt−j,
∞∑
j=0

|ψj| <∞,

where the coefficients ψj are given by

∞∑
j=0

ψjz
j =

θ(z)

φ(z)
=

1 + θz

1− φz
= (1 + θz)

∞∑
j=0

(φz)j

= 1 +
∞∑
j=1

(φ+ θ)φj−1zj.

From F&S p. 8 we know that the causal ARMA(1, 1) process has the ACVF

γ(h) =
∞∑
j=0

ψjψj+hσ
2.

In particular,

γ(0) = σ2

∞∑
j=0

ψ2
j = σ2

(
1 + (φ+ θ)2

∞∑
j=1

φ2(j−1)
)

= σ2
(

1 + (φ+ θ)2
∞∑
j=0

φ2j
)

= σ2
(

1 +
(φ+ θ)2

1− φ2

)
.
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Inserting φ = 0.5, θ = 1.5 and σ = 1 gives

Var(Xt) = 1 +
22

3/4
= 1 +

16

3
= 19/3 ≈ 6.33.

Problem 5

The sample ACVF based on a sample of size n from the time series Yt = Xt + ct is
given by

γ̂Y (h) =
1

n

n−h∑
t=1

(Yt − Y n)(Yt+h − Y n)

=
1

n

n−h∑
t=1

(Xt + ct− Y n)(Xt+h + c(t+ h)− Y n)

=
1

n

n−h∑
t=1

XtXt+h +
1

n

n−h∑
t=1

Xt(c(t+ h)− Y n) +
1

n

n−h∑
t=1

Xt+h(ct− Y n)

+
1

n

n−h∑
t=1

(ct− Y n)(c(t+ h)− Y n).

Due to E[Xt] = 0,

1

n

n−h∑
t=1

XtXt+h ≈
1

n

n−h∑
t=1

(Xt −Xn)(Xt+h −Xn) = γ̂X(h),

Y n = Xn +
1

n

n∑
t=1

ct ≈ cn

2
.

Set

An =
1

n

n−h∑
t=1

Xt(c(t+ h)− Y n) +
1

n

n−h∑
t=1

Xt+h(ct− Y n)

and notice that we may use that An/n
2 ≈ 0 for n sufficiently large. Moreover,

1

n

n−h∑
t=1

(ct− Y n)(c(t+ h)− Y n) ≈ 1

n

n−h∑
t=1

(ct− cn/2)(c(t+ h)− cn/2)

=
1

n

n∑
t=1

(ct− cn/2)2 +O(n).

Finally,

1

n

n∑
t=1

(ct− cn/2)2 =
1

n

(
c2
n(n+ 1)(2n+ 1)

6
− 2c(cn/2)

n(n+ 1)

2
+ n(cn/2)2

)
≈ n2c2

(2

6
− 1

2
+

1

4

)
= n2c2/12.

In particular, for n sufficiently large,

ρ̂Y (h) ≈ γ̂X(h) + n2(An/n
2) + n2c2/12

γ̂X(0) + n2(An/n2) + n2c2/12
≈ 1.


